核技术利用建设项目 通州院区新增 1 台 DSA 项目 环境影响报告表

首都医科大学附属北京友谊医院 2025年01月

生态环境部监制

核技术利用建设项目 通州院区新增 1 台 DSA 项目 环境影响报告表

建设单位: 首都医科大学附属北京友谊医院

建设单位法人代表(签名或签章):

通讯地址:北京市通州区潞苑东路101号院

邮政编码: 101125 联系人: 杨艳艳

电子邮箱: yangyanyan.com@163.com 联系电话: 13051670922

目 录

表 l	坝日基本情况	1
表 2	放射源	12
表3	非密封放射性物质	13
表 4	射线装置	14
表 5	废弃物(重点是放射性废弃物)	15
表 6	评价依据	16
表 7	保护目标与评价标准	19
表8	环境质量和辐射现状	24
表9	项目工程分析与源项	26
表 10	辐射安全与防护	30
表 11	环境影响分析	37
表 12	辐射安全管理	48
表 13	结论与建议	53
表 14	审 批	55

表 1 项目基本情况

建设工	项目名称	通州院区新增 1 台 DSA 项目						
建i	没单位	首都医科大学附属北京友谊医院						
法人	人代表	张澍	张澍田 联系人		杨艳艳	联系电话	1305	51670922
注力	册地址	北京市	万通 /	州区潞苑东路	图 101 号院			
项目建设地点		北京市 综合核		州区潞苑东路 昙	¥ 101 号院通	1州院区通州	院区=	干保医技
立项	审批部门		2	无	批准文号		无	
,	设项目 (万元)	1000	项	目环保投资 (万元)	100			10%
项	目性质	☑翁	f 建	□改建 □扩建	建 □其它	占地面积 (m²) 66		66.64
	放射源	□销售		□I类 □II类 □IV类 □V类				
	八又为] <i>(</i>)尽	□使月	Ħ	□I类(医疗使用) □II类 □III类 □IV类 □V类				
	非密封	口生产	公		□制备 PET	`用放射性药	物	
应	放射性	□销售	山町	. /				
用类	物质	□使月	Ħ		ΠZ	」。同丙		
型型	4146	ロ生産	<u> </u>		 □IIჰ	类 □III类		
	射线 装置	□销售	害	□II类 □III类				
		☑使》	用	☑II类 □III类				
	其他							

1.1 单位概况

首都医科大学附属北京友谊医院(以下简称"北京友谊医院"或"医院")始建于 1952年,原名为北京苏联红十字医院,是新中国成立后,由党和政府建立的第一所大型综合性医院。1970年,周总理亲自命名为"北京友谊医院"。

经过 70 余年的发展,首都医科大学附属北京友谊医院已发展为集医疗、教学、科研、预防为一体的北京市属三级甲等综合医院,是国家消化系统疾病临床医学研究中心和消化健康全国重点实验室依托单位,国家中西医结合"旗舰"医院试点单位,首都医科大学第二临床医学院。进入新时代,医院顺应首都发展变化,立足北京"四个中心"功能定位,落实北京城市总体规划,服务非首都功能疏解,形成了西城院区、通州院区、顺义院区和城市副中心行政办公区门诊部"三区一

部"新发展格局,为医院高质量发展奠定基础。2023 年 12 月,通州院区二期项目开诊运行。2024 年 4 月 26 日,顺义院区开诊,成为顺义区首家三甲综合医院。

医院现有职工 5100 余人,其中中国工程院院士 1 人,北京学者 3 人,研究生导师 257 人,高级专业技术人员 825 人,国家级和北京市级专业委员会主委、副主委及核心期刊主编、副主编 95 人。目前三院区编制床位 3306 张。2023 年年门诊总量 336 万人次,出院患者 9.4 万人次。医院是北京市首批基本医疗保险 A 类定点医疗机构,已开通门诊、住院异地医保持卡结算服务,也是全国最早承担干部保健及外宾医疗任务的医院之一。

医院拥有北京临床医学研究所、北京热带医学研究所、北京市中西医结合研究所、北京市临床药学研究所和北京市卫生局泌尿外科研究所等 5 个研究机构,拥有国家临床重点专科 10 个,博士点 27 个,硕士点 32 个,国家住院医师规范化培训专业基地 17 个,国家专科医师规范化培训试点基地 4 个,全国重点实验室1 个,北京市重点实验室 4 个,北京市临床质控中心 4 个,北京市转化中心 1 个,还拥有支撑临床研究发展的国家消化系统疾病临床医学研究中心、消化健康全国重点实验室、北京市首批示范研究型病房、北京临床研究质促中心、ISO9001 认证生物样本库、多中心互认医学伦理平台等。医院与海外及国内优秀医学院校长期保持学术交流合作,接待国内外专家学者和留学生短期交流及来院参观见习。

北京友谊医院为已取得《辐射安全许可证》单位。

1.2 核技术利用及辐射安全管理现状

1.2.1 核技术利用现状情况

北京友谊医院已取得了北京市生态环境局颁发的《辐射安全许可证》(京环辐证[B0353]),有效期至 2027 年 9 月 14 日),许可的种类和范围是:使用 V 类放射源,使用 II 类、III 类射线装置,乙级、丙级非密封放射性物质工作场所。

北京友谊医院已许可射线装置使用情况见表 1-1。

序号	名称	类别 (类)	数量(台)	备注
1	CT 机	III	24	使用
2	PET-CT	III	2	使用
3	SPECT-CT	III	3	使用
4	放射治疗 CT 模拟定位机	III	1	使用
5	骨密度仪	III	11	使用

表 1-1 北京友谊医院已许可的射线装置情况

6	普通 X 射线机	III	34	使用
7	乳腺 X 射线机	III	4	使用
8	数字减影血管造影装置	II	13	使用
9	牙科 CT 机	III	6	使用
10	牙科 X 射线机	III	10	使用
11	医用加速器	II	1	使用
12	移动X射线机	III	39	使用
13	移动 C 形臂 X 射线机	III	7	使用
	合计	155		

医院已许可的非密封放射性同位素使用情况见表 1-2。

表 1-2 北京友谊医院已许可非密封放射性同位素使用情况

序号	场所名称	场所 等级	核素	活动种类	用途	日最大 操作量 (贝可)	日等效最 大操作量 (贝可)	年最大 用量 (贝可)	备注				
1			F-18	使用	诊断	7.4E+9	7.4E+6	1.85E+12					
2			Ga-68	使用	诊断	3.7E+8	3.7E+6	1.85E+10					
3	顺义院区		I-123	使用	诊断	1.48E+9	1.48E+7	7.40E+10					
4	核医学科	乙级	I-131	使用	诊断	3.33E+6	3.33E+5	3.33E+8					
5	门诊		I-131	使用	诊断	9.25E+8	9.25E+7	9.25E+10					
6			Tc-99m	使用	诊断	1.48E+9	1.48E+8	7.4E+10					
7			Tc-99m	使用	诊断	3.7E+10	3.7E+7	9.25E+12					
8			I-131	使用	治疗	2.66E+10	2.66E+9	1.32E+12	甲癌住院治 疗				
9	顺义院区 核医学治		I-131	使用	治疗	1.85E+9	1.85E+7	1.85E+11	门诊甲亢治 疗				
10	疗区	/ 714	Lu-177	使用	治疗	7.40E+9	7.40E+8	3.70E+11	前列腺癌等 留观治疗				
11							Ra-223	使用	治疗	1.32E+7	1.32E+8	6.60E+8	门诊治疗
12			Sr-89	使用	治疗	2.96E+8	2.96E+7	1.48E+10	门诊治疗				
13	西城院区 核医学科	丙级	I-125 (粒子源)	使用	治疗	1.78E+10	1.78E+7	3.33E+11					
14			Cu-64	使用	教学 科研	3.7E+8	3.7E+6	4.62E+10					
15			F-18	使用	诊断	2.96E+10	2.96E+7	5.92E+12					
16			Ga-67	使用	诊断	1.85E+8	1.85E+7	1.85E+10					
17	西城院区		Ga-67	使用	诊断	1.85E+8	1.85E+7	1.85E+10					
18	核医学科	乙级	Ga-68	使用	诊断	3.7E+8	3.7E+6	4.62E+10					
19			I-123	使用	诊断	5.55E+9	5.55E+7	9.25E+10					
20			I-131	使用	诊断	1.85E+7	1.85E+6	3.7E+8					
21			I-131	使用	治疗	7.42E+9	7.42E+8	1.48E+12					
22			Lu-177	使用	治疗	3.70E+9	3.70E+8	1.11E+11					

23			Ra-223	使用	治疗	7.4E+6	7.4E+7	2.25E+8	
24			Sr-89	使用	治疗	7.4E+8	7.4E+7	1.48E+11	
25			Tc-99m	使用	诊断	1.18E+12	1.18E+9	3.55E+13	
26			Tc-99m	使用	诊断	3.0E+11	3.0E+8	3.55E+13	
27			T1-201	使用	诊断	1.85E+9	1.85E+6	1.85E+10	
28			T1-201	使用	诊断	1.85E+9	1.85E+6	1.85E+10	
29			Zr-89	使用	诊断	7.40E+7	7.40E+6	4.44E+9	
30	西城院区 内镜中心	丙级	I-125 (粒子源)	使用	治疗	1.78E+9	1.78E+6	3.55E+11	
31	西城院区 手术室 (医技楼)	丙级	I-125 (粒子源)	使用	治疗	1.78E+9	1.78E+6	3.33E+11	

医院已许可的放射源使用情况见表 1-3。

表 1-3 医院已许可的放射源使用情况

序号	辐射活动场所	核素	类别	活度(Bq)	(枚数)	备注
1		Se-75	V类	1.48E+6	1	使用
2		Se-75	V类	1.58E+8	1	使用
3	西城院区国际	Co-57	V类	1.17E+8	1	使用
4	医学部	Ge-68	V类	7.4E+7	2	使用
5		Co-57	V类	1.48E+6	1	使用
6		Ge-68	V类	9.25E+7	1	使用

1.2.2 近几年履行环保审批情况

北京友谊医院医院近 5 年以来一共有 5 个辐射环评报告表项目,具体落实情况见表 1-4。

表 1-4 建设项目环保手续落实情况

序号	环评批复文号	项目名称	竣工验收情况	备注
1	京环审[2020]41 号	通州院区新增使用 4 台 DSA 项目	于 2021 年 8 月完成自 主验收	
2	京环审[2022]103 号	西城院区使用2台II类射线 装置项目	于 2023 年 05 月完成 自主验收	
3	京环审[2023]50 号	顺义院区新建核医学科	于 2024 年 11 月完成 自主验收	
4	京环审[2023]60 号	西城院区使用1台DSA项目	于 2024 年 11 月完成 自主验收	
5	京环审[2024]83 号	顺义院区新建核医学科病房 项目	正在办理竣工验收	

1.2.3 辐射安全管理情况

1.2.3.1 辐射管理机构基本情况

为了加强辐射安全和防护管理工作,促进放射性同位素和射线装置的安全使

用,北京友谊医院专门成立了辐射安全与防护委员会,由医院理事长、执行院长担任主任委员,副院长担任副主任委员,院办、疾病控制与预防感染管理处、医学工程处、人力资源处、规划建设处、核医学科、放射科、口腔科、神经外科、心脏中心等部门的相关人员担任组员,并指定疾病控制与预防感染管理处杨艳艳、朱晨笛专职负责辐射安全管理工作。辐射防护领导小组成员名单见表 1-5。

表 1-5 医院辐射安全防护领导小组成员名单

序号	人员 类别	姓名	性别	专业	职务或职称	工作部门	专/兼职
1	bo V.	谢向辉	男	医院管理	党委书记 (理事长)	院办	兼职
2	组长	张澍田	男	内科学	执行院长 (法人)	院办	兼职
3	副组长	邓明卓	男	医院管理	主管副院长	院办	兼职
4	组员	王振常	男	医院管理	副院长	院办	兼职
5	组员	李彦昌	男	医院管理	总务处处长	总务处	兼职
6	组员	王兢	女	护理学	中心手术室护士长	中心手术室	兼职
7	组员	杨艳艳	女	医院管理	医师	疾病控制与预 防感染管理处	专职
8	组员	郑伟	男	医院管理	行政处室正职	规划建设处	兼职
9	组员	董瑞华	男	临床药理	研究型病房主任	研究型病房	兼职
10	组员	朱晨笛	男	医院管理	医师	疾病控制与预 防感染管理处	专职
11	组员	谢聃	女	医院管理	行政处室负责人	人力资源处	兼职
12	组员	孙建军	男	外科学	临床科室负责人	神经外科	兼职
13	组员	金龙	男	介入放射科	介入放射科主任	介入放射科	兼职
14	组员	郭欣	女	医院管理	门诊部副主任	门诊部	兼职
15	组员	任晓蕊	女	医院管理	感控处副处长	感控处	专职
16	组员	骆金铠	女	护理学	行政处室负责人	护理部	兼职
17	组员	周春莲	女	医院管理	行政处室主任	疾病控制与预 防感染管理处	兼职
18	组员	陈建军	男	医院管理	行政处室负责人	医学工程处	兼职
19	组员	任军	男	医学工程	放射组组长	医学工程处	兼职
20	组员	牛亦农	男	外科学	临床科室负责人	泌尿外科	兼职
21	组员	曹邦伟	男	肿瘤学	肿瘤中心主任	肿瘤中心	兼职
22	组员	郭艾	男	外科学	临床科室负责人	骨科	兼职
23	组员	刘壮	男	医院管理	行政处室负责人	医务处	兼职
24	组员	王婷婷	女	医院管理	临床科室负责人	国际医疗部	兼职
25	组员	吴丽青	女	医院管理	采购中心主任	采购中心	兼职
26	组员	尤红	女	内科学	常务副院长	院办	兼职
27	组员	崔永	男	外科学	临床科室负责人	胸外科	兼职
28	组员	杨正汉	男	医学影像与	临床科室负责人	放射科	兼职

				放射治疗			
29	组员	王拥军	男	内科学	临床科室负责人	消化科	兼职
30	组员	李虹伟	男	内科学	临床科室负责人	心脏中心	兼职
31	组员	黄晓峰	男	口腔科	临床科室负责人	口腔科	兼职
32	组员	杨吉刚	男	核医学	核医学主任	核医学科	兼职
33	组员	苑国强	男	医院管理	保卫处副处长	保卫处	兼职
34	组员	梅雪岭	男	医院管理	教育处处长	教育处	兼职
35	组员	张拥波	男	神经内科	神经内科主任	神经内科	兼职

1.2.3.2 制定规章制度及落实情况

医院制定了多项辐射安全管理制度,包括《辐射防护与安全管理小组及其职责》、《辐射防护和安全保卫制度》、《操作规程》、《放射设备检修维护制度》、《台账管理制度》、《放射工作人员管理制度》、《辐射工作场所监测制度》、《放射性废物暂存、处置方案》、《辐射事故(件)应急预案》等,医院辐射安全管理严格遵循国家的各项相关规定,结合医院的具体情况,认真贯彻辐射安全和防护的相关制度,能够满足实际工作需要。

1.2.3.3 工作人员考核情况

北京友谊医院制定了辐射工作人员培训考核计划。目前,医院从事辐射相关 工作人员约 425 人分批参加了辐射安全和防护培训,并通过了考核。

今后,医院将按照生态环境部 2019 年第 57 号公告、2021 年第 9 号公告要求,定期(五年一次)组织辐射工作人员进行辐射安全防护考核,考核通过后方可上岗。

1.2.3.4 个人剂量监测

医院所有从事辐射工作的医护人员均佩带 TLD 个人剂量计,每季度监测 1次,按照《职业性外照射个人监测规范》(GBZ128-2019)和《放射性同位素与射线装置安全和防护管理办法》(原环境保护部令 18号)要求建立个人剂量档案,并于每年 5 月 31 日前将上一年度全体辐射工作人员的个人剂量监测数据上报至全国核技术利用辐射安全申报系统中。

北京友谊医院现有辐射工作人员的个人剂量监测工作已委托北京市疾病预防控制中心承担,监测频度为每 3 个月检测一次。医院本部最近一年度(2023年)个人年度剂量检测报告表明,辐射工作人员年剂量最大值为 0.806mSv,均未超过医院年剂量管理目标值,说明北京友谊医院的辐射安全防护措施是可行

的,满足辐射安全管理要求。

医院有专人负责个人剂量监测管理工作。发现个人剂量监测结果异常的,将及时调查原因,并将有关情况及时报告医院辐射安全防护领导小组。医院今后将加强个人受照剂量监测工作,如果某位辐射工作人员的单季度个人剂量监测结果高于年剂量约束值的 1/4,将对其受照原因进行调查,结果由本人签字后存档;必要时将采取调离工作岗位或控制从事辐射工作时间等措施,保障辐射工作人员的健康。

1.2.3.5 工作场所及辐射环境监测

(1)工作场所辐射水平监测:根据《放射性同位素与射线装置安全和防护管理办法》(原环保部令第 18 号)的要求,医院每年委托有资质单位对射线装置和非密封放射性物质工作场所进行 1 次工作场所环境辐射水平监测和工作场所表面污染水平监测,监测数据记录存档。

医院每年委托有资质的单位对医院已有的辐射场所防护和机器性能检测一次,且北京市卫生健康委员会每年都要对医院的《放射诊疗许可证》校验一次,校验时医院必须提供当年的检测合格报告,检测报告齐全,检测结果均满足相关标准要求。

(2) 工作场所自行监测:根据《北京市辐射工作场所辐射环境自行监测办法(试行)》要求,医院定期开展工作场所环境辐射水平自行监测。核医学场所每天工作结束后,对非密封放射性同位素工作场所的工作台台面、手套箱台面、注射台以及设备等进行表面污染监测,监测数据记录存档。工作人员离开可能受到放射性污染的工作场所时,监测其工作服、体表的表面污染水平。

医院现有的监测方案基本能够满足现有场所使用要求, 医院已配备的辐射监测仪器, 详细清单见表 1-6。

序号	仪器名称	型号	仪器状态	数量	备注
1	固定式剂量报警仪	DCP-ZJY	正常	1	顺义院区核医学治疗区 (含病房)
2	表面污染监测仪	MR-AB30	正常	1	顺义院区核医学治疗区 (含病房)
3	辐射剂量巡测仪	FJ1200	正常	1	顺义院区核医学治疗区 (含病房)
4	表面沾染仪	INSPFCTOR Alert V2	正常	1	消化内镜中心

表 1-6 医院现配有辐射监测仪器清单

5	数字区域 X 线检测仪	375	正常	2	心脏导管和放射科导管室 各 1 台
6	辐射测量仪	FJ1200	正常	2	通州院区手术室导管室、 介入中心各1台
7	数字式表面沾污仪	Inspector	正常	1	西城院区核医学科
8	射线辐射仪	INSPFCTOR 11608	正常	1	西城院区核医学科
9	环境 X、Y 辐射测量仪	FJ1200	正常	1	西城院区中心手术室第 20 手术室
10	个人剂量仪	FJ3500	正常	17	
11	表面沾染仪	TBM-3S	正常	1	西城院区核医学科
12	个人剂量仪	FJ3200	正常	2	消化内镜中心
13	便携式辐射剂量率仪	HA31006-N10	正常	2	顺义院区核医学科门诊、 导管中心及手术室各1台
14	个人剂量仪	WF-99	正常	3	放疗科
15	个人剂量仪	SDC-61	正常	1	放疗科

待本项目建设完成后,周围场所的辐射水平监测工作,将继续纳入医院辐射工作场所的监测范围,一并按照现有制度规定的频度开展。

1.2.3.6 辐射事故应急管理

医院许可的活度种类范围为使用放射性同位素与II类、III类射线装置,已制定了《辐射应急预案》,预案中明确了应急指挥机构、人员组成及分工、应急部门及人员职责、应急器材,发生辐射事故时的报告、通讯联络方式、应急处置方式等,以保证本单位一旦发生辐射意外事件时,即能迅速采取必要和有效的应急响应行动,妥善处理放射事故,保护工作人员和公众的健康与安全。

发生辐射事故时,单位应当立即启动本单位的辐射事故应急方案,采取必要防范措施,并在 2 小时内填写《辐射事故初始报告表》,向当地生态环境部门报告。造成或可能造成人员超剂量照射的,还应同时向当地卫生健康部门报告。医院将每年至少组织一次应急演练。

2024 年 7 月,为规划和加强放射突发事件应急处理能力,同时最大程度地降低放射事件可能造成的后果,保障辐射工作人员及患者的生命安全,医院辐射安全领导小组组织核医学科、放疗科、医学影像中心、感控处、保卫处等相关科室人员参加了每年一度的辐射事件应急预案演练,使工作人员知晓发生辐射时的处置流程,加强应对各类突发事件的处理能力,有效提高工作人员辐射事件的防范意识,效果良好。

1.2.3.7 其他情况

医院较圆满地完成了各项辐射安全防护工作,依据法律法规每年对本单位同位素和射线装置的安全和防护状况进行了年度评估,目前已编写上报了 2024 年年度评估报告。

1.3 项目建设规模、目的和任务的由来

1.3.1 本项目基本情况

本项目拟在医院通州院区干保医技综合楼(地上5层,地下4层)4层新建1间医保1室及相关场所,并新增使用1台DSA,主要用于开展心血管、脑血管、外周介入手术等。本项目射线装置情况见表1-7。

表 1-7 本项目射线装置情况表

序号	工作场所	设备名称	设备型号	生产厂家	管电压 (kV)	输出电流 (mA)	类别	备注
1	医保1室	血管造影机	Allia IGS 7	GE	125	1000	II类	单球管

1.3.2 目的和任务的由来

本项目使用的血管造影机(DSA)属于使用II类射线装置项目,根据《放射性同位素与射线装置安全和防护条例》和《建设项目环境影响评价分类管理名录》等相关规定,本项目应当进行环境影响评价,编制环境影响报告表,报生态环境主管部门审批。

根据生态环境部《建设项目环境影响报告书(表)编制监督管理办法》(2019年生态环境部令第9号)最新要求,北京辐环科技有限公司符合第九条第一款规定,无该条第三款所列情形,不属于该条第二款所列单位。公司有专职环评工程师,有能力开展环境影响评价工作。受医院的委托,评价机构环评人员在现场踏勘、收集资料的基础上,对该项目建设和运行对环境的辐射影响进行了分析评价,并编制了环境影响报告表。评价主要考虑 DSA 在使用过程中,对周围环境的辐射影响,对职业人员和公众的辐射影响。

1.3.3 本项目产业政策符合性及实践正当性

本项目使用的血管造影机(DSA)属于II类射线装置项目,依据《产业结构 调整指导目录(2024年本)》中"第一类 鼓励类""十三、医药"中"4.高端医疗器 械创新发展:新型基因、蛋白和细胞诊断设备,新型医用诊断设备和试剂,高性 能医学影像设备,高端放射治疗设备,急危重症生命支持设备,人工智能辅助医疗设备,移动与远程诊疗设备,高端康复辅助器具,高端植入介入产品,手术机

器人等高端外科设备及耗材,生物医用材料、增材制造技术开发与应用",本项目属于"新型医用诊断设备、高性能医学影像设备"类项目,属于鼓励类,符合国家产业政策。

本项目不属于《北京市新增产业的禁止和限制目录(2022 年版)》中禁止和限制项目。因此,本项目的建设符合国家及地方产业政策要求。

介入放射学是基于影像学而融影像诊断与介入性治疗为一体的学科,是现代影像学的重要组成部分。由于介入诊断直观有效,为临床上许多问题开拓了新的解决途径,使介入诊断成为许多病患诊断的黄金标准。介入治疗具有创伤小、疗效迅速、恢复快等特点,是目前部分疾病的首选治疗方法。而先进的血管造影设备则是介入诊疗一个非常重要的手段及平台。

北京友谊医院本次申请使用的 DSA 为很成熟的医用 X 射线设备,是血管疾病检查治疗的必需设备,被广泛地应用在血管介入治疗中,对血管疾病的检查治疗具有高度特异性,尽管 X 射线对人体有少许危害,但是借助上述设备可以辅助医学诊断治疗,所获利益远大于其危害。

DSA 设备运行不产生放射性"三废",对周围环境的辐射影响也很小,对职业人员、公众以及环境带来的不利影响,远低于其使用对社会带来的利益,故该核技术应用项目具有正当性。

1.3.4 开展新项目的技术能力

(1) 人员配备

医院现有血管造影机(DSA)设备共计 13 台(其中西城院区 5 台,通州院区 5 台,顺义院区 3 台),目前全院从事介入工作的医、技、护约 88 名(其中 56 名医师、16 名技师、16 名护士),医院现有 13 台 DSA 最近一年手术量约 11500 例,现有辐射工作人员能够满足全院 13 台 DSA 近期工作的需求。

本次拟在通州院区医保 1 室新增的血管造影机 (DSA) 建成后主要用于开展心血管、脑血管、外周介入手术等。本项目建成启用后,全院 DSA 总台数增加到 14 台(西城院区 5 台,通州院区 6 台,顺义院区 3 台)。建成后本项目医师、技师利用现有人员,同时拟新增 1 名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至 89 名(其中 56 名医师、16 名技师和 17 名护士),按照每台 DSA 每组 2 名医师、1 名技师、1 名护士配备,则本项目建成后全院参与轮班的医师平均可分为 28 组,每台 DSA 平均可配 2 组医师 (4 名)、1 名技师和 1 名

护士,能够满足射线装置的使用需求。

本次通州院区医保 1 室启用后预计年手术量约 500 例,则建成后全院总共年 手术量约 12000 例,全院参与轮班的医师平均可分为 28 组,每组平均年手术量 约 429 例,每月最多 36 例手术(每天最多 2 例),但考虑到 DSA 设备发生故障 及将来手术量增加等情况,本项目年手术量保守按 1000 例(平均每天 4 例)评价,平均每组医师(2 名)年手术量最大约 500 例,故本项目保守按每名医师全年手术量 500 例进行剂量估算。

(2) 检测仪器配备

本项目拟利用现有的1台便携式辐射巡测仪,用于医保1室开展自行监测。

表 2 放射源

序号	核素名称	总活度(Bq)/ 活度(Bq)×枚数	类别	活动种类	用途	使用场所	贮存方式与地点	备注
无								

注: 放射源包括放射性中子源,对其要说明是何种核素以及产生的中子流强度 (n/s)。

表 3 非密封放射性物质

序号	核素 名称	理化性质	活动种类	实际日最大 操作量(Bq)	日等效最大 操作量(Bq)	年最大用量 (Bq)	用途	操作方式	使用场所	贮存方式与地点
无										

注: 日等效最大操作量和操作方式见国家标准《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)。

表 4 射线装置

(一)加速器:包括医用、工农业、科研、教学等用途的各种类型加速器

序号	名称	类别	数量	型号	加速 粒子	最大能量 (MeV)	额定电流(mA) /剂量率(Gy/h)	用途	工作场所	备注
无										

(二) X 射线机,包括工业探伤、医用诊断和治疗、分析等用途

序号	名称	类别	数量	型号	最大管电压 (kV)	最大管电流 (mA)	用途	工作场所	备注
1	血管造影机 (DSA)	II类	1	Allia IGS 7	125	1000	介入诊疗	通州院区干保医技综合 楼4层医保1室	本次DSA为 单球管设备

(三)中子发生器,包括中子管,但不包括放射性中子源

序	名称	类	数	型号	最大管电压	最大靶电流	中子强度	用途		氘	〔靶情况		备注
号	4000	别	量	坐り	(kV)	(μΑ)	(n/s)	用逐	场所	活度(Bq)	贮存方式	数量	金 位
无													

表 5 废弃物 (重点是放射性废弃物)

名称	状态	核素 名称	活度	月排放量	年排放 总量	排放口 浓度	暂存 情况	最终 去向

注: 1.常规废弃物排放浓度,对于液态单位为 mg/L,固体为 mg/kg,气态为 mg/m^3 ,年排放总量用 kg。

^{2.} 含有放射性的废物要注明,其排放浓度、年排放总量分别用比活度(Bq/L 或 Bq/kg 或 Bq/m³)和活度(Bq)。

表 6 评价依据

- 1. 《中华人民共和国环境保护法》,中华人民共和国主席令第9号,2015年1月1日起施行。
- 《中华人民共和国环境影响评价法》,全国人民代表大会常务委员会, 2002年10月28日通过,自2003年1月1日起实施;2016年7月2 日第一次修正;2018年12月29日第二次修正。
- 3. 《中华人民共和国放射性污染防治法》,中华人民共和国主席令第 6 号,2003年10月1日起施行。
- 4. 《建设项目环境保护管理条例》,1998年11月29日国务院令第253号发布施行;2017年7月16日国务院令第682号修订,2017年10月1日起实施。
- 5. 《放射性同位素与射线装置安全和防护条例》,国务院令第709号第二次修订,2019年3月2日第二次修订版公布并实施。

法规 文件

- 6. 《建设项目环境影响评价分类管理名录》,中华人民共和国生态环境部。 部令第 16 号, 2020 年 11 月 30 日公布, 2021 年 1 月 1 日起实施。
- 7. 《放射性同位素与射线装置安全许可管理办法》,中华人民共和国生态环境部 部令第20号修订,2021年1月4日公布并实施。
- 8. 《放射性同位素与射线装置安全和防护管理办法》,原中华人民共和国环境保护部部令第18号,2011年4月18日公布,2011年5月1日起实施。
- 9. 《关于发布<射线装置分类>的公告》,原中华人民共和国环境保护部、原国家卫生和计划生育委员会公告 2017 年第 66 号。
- 10.《关于发布<建设项目竣工环境保护验收暂行办法>的公告》,国环规环评[2017]4号,2017年11月20日。
- 11.《建设项目环境影响报告书(表)编制监督管理办法》,中华人民共和国生态环境部令第9号,2019年11月1日。
- 12. 《北京市城乡规划条例》,北京市人民代表大会常务委员会公告〔十五届〕第61号,2021年9月24日修订版公布并实施。
- 13. 《北京市辐射工作场所辐射环境自行监测办法(试行)》,原北京市环

境保护局文件, 京环发〔2011〕347号。

- 14.《辐射安全与防护监督检查技术程序》,中华人民共和国生态环境部, 2020年2月。
- 15. 《北京市环境保护局办公室关于做好辐射类建设项目竣工环境保护验收工作的通知》,京环办[2018]24号,2018年1月25日。
- 16.《产业结构调整指导目录(2024年本)》,国家发展改革委令第7号, 2024年2月1日施行。
- 17. 《关于核技术利用辐射安全与防护培训和考核有关事项的公告》,中华人民共和国生态环境部公告 2019 年第 57 号,2019 年 12 月 24 日。
- 18.《关于进一步优化辐射安全考核的公告》,中华人民共和国生态环境部公告 2021 年第 9 号, 2021 年 03 月 15 日实施。
- 19. 《产业结构调整指导目录(2024 年)》,国家发展和改革委员会 2023 年第 7 号令, 2024 年 2 月 1 日起施行。
- 20. 《北京市新增产业的禁止和限制目录(2022 年版)》,北京市人民政府办公厅,京政发办(2022)5号,2022年2月14日起施行。
- 1. 《辐射环境保护管理导则-核技术利用建设项目 环境影响评价文件的内容和格式》(HJ10.1-2016),中华人民共和国环境保护部,2016年04月01日实施。
- 2. 《电离辐射防护与辐射源安全基本标准》(GB18871-2002),中华人 民共和国国家质量监督检验检疫总局,2003年04月01日实施。

技术 标准

- 3. 《放射诊断放射防护要求》(GBZ130-2020),中华人民共和国国家卫生健康委员会,2020年10月01日实施。
- 4. 《职业性外照射个人监测规范》(GBZ128-2019),中华人民共和国国家卫生健康委员会,2020年04月01日实施。
- 5. 《环境 γ 辐射剂量率测量技术规范》(HJ1157-2021), 中华人民共和国生态环境部, 2021 月 05 月 01 日实施。
- 6. 《辐射环境监测技术规范》(HJ61-2021),中华人民共和国生态环境部,2021年05月01实施。

- NCRP Report No.147: Structural Shielding Design and Evaluation for Medical X-Ray imaging Facilities, 2004.
- 2. 《辐射防护手册》<第一分册 辐射源与屏蔽>(李德平 潘自强 主编), 1987。
- 3. 《辐射防护手册》<第三分册 辐射安全>(李德平 潘自强 主编), 1990。
- 4. 《医用 X 射线诊断设备质量控制检测规范》(WS76-2020),中华人民 共和国国家卫生健康委员会,2021年05月01日实施。
- 5. 《医用辐射危害控制与评价》,中国原子能出版社,2017年11月。
- 6. 《中国环境天然放射性水平》,原国家环境保护局监督管理司,1995 年8月。
- 7. 医院提供的建筑结构设计图以及与建设项目相关的其他技术资料, 2024年12月。

其他

表 7 保护目标与评价标准

7.1 评价范围

7.1.1 评价内容

本项目评价内容为医院通州院区干保医技综合楼4层新建的医保1室及使用的1台DSA。

7.1.2 关注问题

- (1) 机房屏蔽是否满足国家相关标准的要求。
- (2) 辐射安全管理情况及污染防治措施是否满足使用射线装置的要求。

7.1.3 评价因子

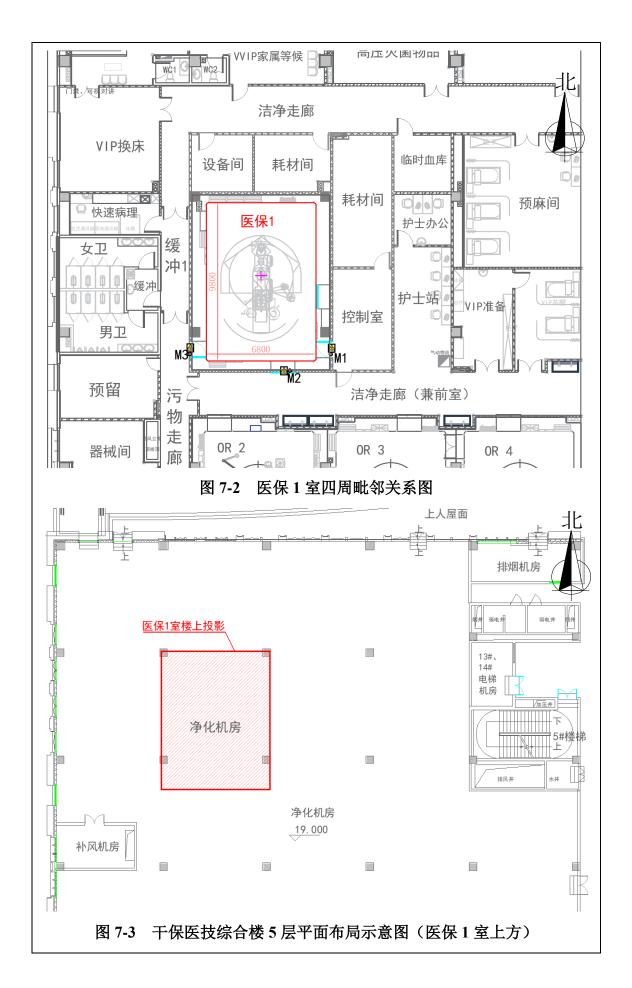
主要为X射线。

7.1.4 评价范围

按照《辐射环境保护管理导则一核技术利用建设项目 环境影响评价文件的内容和格式》(HJ10.1-2016)的规定,确定本项目评价范围为医保1室外周围50m区域。

7.2 环境保护目标

本次拟建的医保 1 室及相关场所位于通州院区干保医技综合楼 4 层,干保医疗综合楼的楼外东侧为门诊楼、综合楼(国际医疗楼)(均不在 50m 范围内); 南侧为停车位(不在 50m 范围内); 西侧为潞通新路; 北侧为干保医疗综合楼(医疗保健中心)。


建成后的医保1室东侧紧邻为控制室、耗材间,之外为护士站、临时血库等 其它场所;南侧紧邻为洁净走廊(兼前室),之外为OR2~3等其它场所;西侧紧 邻为缓冲1,之外为卫生间、缓冲间等其它场所;北侧紧邻为设备间、耗材间, 之外为洁净走廊等其它场所;楼上为净化机房;楼下为镜房(内镜器械室)、医 护走道、水处理隔间、洗镜室。

根据项目特点及周围毗邻关系,确定主要环境保护目标为该单位从事本项目射线装置操作的辐射工作人员、机房周围其他公众成员,详见表 7-1, 医保 1 室周围 50m 范围内主要建筑物见图 7-1, 四周毗邻关系见图 7-2, 机房楼下、楼下关系图见图 7-3~7-4。

表 7-1	本项目场所周围	50m 范围	内主要保护目标
10 / T			rjık senji biyi

项目	保护目标	最近距离 (m)	常居留人数 (人)	方位	周围 50m 范围内 主要场所
医保1室 所在的干保	公众	23	0	干保医疗综合楼 西侧	潞通新路
医疗综合楼 楼外	公众	22	>50	干保医疗综合楼 北侧	干保医疗综合楼(医 疗保健中心)
	公众	紧邻	0		控制室、耗材间
	公众	4	6	医保1室东侧	护士站、临时血库等 其它场所
	公众	紧邻	0	医伊丁克毒侧	洁净走廊 (兼前室)
	公众	3	4	医保1室南侧	OR2~3 等其它场所
医保1室	公众	紧邻	2		缓冲1
所在的干保 医疗综合楼	公众	2	1	医保1室西侧	卫生间、缓冲间等其 它场所
楼内	工作人员	紧邻	2	医保1室北侧	设备间、耗材间
	公众	4	2	医休工至孔侧	洁净走廊等其它场所
	公众	4.6	0	医保1室楼上	净化机房
	公众	4.5	1	医保1室楼下	镜房(内镜器械室)、 医护走道、水处理隔 间、洗镜室

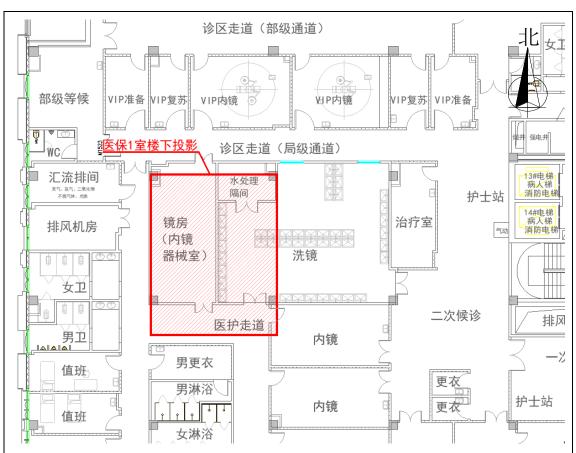


图 7-4 干保医技综合楼 3 层平面布局示意图(医保 1 室下方)

7.3 评价标准

7.3.1 基本剂量限值

根据《电离辐射防护与辐射源安全基本标准》(GB18871-2002) 规定的剂量限值列于表 7-2。

辐射工作人员	公众关键人群组成员
连续五年平均有效剂量 20mSv,且任何	年有效剂量 1mSv; 但连续五年平均值不超过
一年有效剂量 50mSv	1mSv 时,某一单一年可为 5mSv
眼晶体的当量剂量 150mSv/a	眼晶体的当量剂量 15mSv/a
四肢或皮肤的当量剂量 500mSv/a	皮肤的当量剂量 50mSv/a

表 7-2 个人剂量限值(GB18871-2002)

7.3.2 剂量约束值

GB18871-2002 还规定了年剂量约束值,按辐射防护最优化原则设计的年剂量控制值应小于或等于该剂量约束值。剂量约束值是剂量限值的一个分数,公众剂量约束值通常应在 0.1~0.3mSv/a 范围内。

该项目职业照射剂量和公众约束值分别执行 5mSv/a 和 0.1mSv/a。对于辐射工作人员年受照剂量异常情况,单位应该进行调查并报生态环境部门备案。

7.3.3 剂量率控制水平

根据 GBZ130-2020, 机房外 30cm 处周围剂量当量率应不大于 2.5µSv/h。

7.3.4 射线装置机房屏蔽防护基本要求

参照 GBZ130-2020 第 6.2 表 3,本项目机房属于 C 型臂 X 射线设备机房,该项目 X 射线设备机房的屏蔽防护铅当量厚度要求如下。

表 7-3 不同类型 X 射线设备机房的屏蔽防护铅当量厚度要求

机房类型	有用线束方向铅当量(mm)	非有用线束方向铅当量(mm)		
C 型臂 X 射线设备机房	2.0	2.0		

7.3.5 X 射线设备机房的面积要求

《放射诊断放射防护要求》(GBZ130-2020)第 6.1 条款指出:每台固定使用的 X 射线设备应设有单独的机房,机房应满足使用设备的布局要求;对新建、改建和扩建的 X 射线机房,其最小有效使用面积、最小单边长度应不小于表 7-4 的要求。

表 7-4 X 射线设备机房使用面积及单边长度

设备类型	机房内最小有效使用面积(m²)	机房内最小单边长度(m)				
单管头 X 射线设备 b (含 C 形臂,乳腺 CBCT)	20	3.5				
备注: 本项目 DSA 为单管头 X 射线设备。						

表 8 环境质量和辐射现状

8.1 辐射环境现状监测

委托持有计量认证资质证书的深圳市瑞达检测技术有限公司于 2024 年 12 月 31 日对本项目相关场所进行了环境地表 γ 辐射剂量率本底监测。

8.1.1 监测项目

环境γ辐射剂量率。

8.1.2 监测对象及点位布设

监测对象:本次监测针对拟建场址所在区域及周边进行环境辐射现状监测。 监测点位:本次监测对拟建场址所在区域及周边进行环境γ辐射监测,监测 点位布设见图 8-3。

8.1.3 监测仪器及方法

(1) 监测设备

本次监测采用的监测设备见表 8-1。

表 8-1 监测设备及性能指标

仪器名称	型号/编号	型号/编号 检定/校准证书/有效日期 主要技术性能	
环境剂量 率仪	GH-102A /20170404	DLj12024-01645 /2025-02-25	测量范围: 0.01μGy/h~100μGy/h; 能量范围: 30keV~8MeV; 相对响应之差: <±15%。

(2) 监测方法

γ辐射剂量率:采用便携式监测仪表,以定点的测量方式进行。监测时每点测量 10 次,每次间隔 10 秒钟,取平均值。

8.1.4 监测依据

《环境γ辐射剂量率测量技术规范》(HJ 1157-2021)。

8.1.5 监测结果


γ剂量率的监测数据见表 8-2,本底检测报告见附件。

表 8-2 拟建辐射工作场所周围 γ辐射环境本底水平监测结果

点位编号	检测位置描述	辐射剂量率(μGy/h)		
点位 加 与		平均值	标准差	
1	拟建 DSA 机房中央	0.07	< 0.01	
2	拟建 DSA 机房东侧(耗材间)	0.07	< 0.01	
3	拟建 DSA 机房东侧(设备间 1)	0.08	< 0.01	
4	拟建 DSA 机房南侧(洁净走廊)	0.08	< 0.01	

5	拟建 DSA 机房西侧(污物走廊)	0.07	< 0.01	
6	拟建 DSA 机房西侧(缓冲间)	0.07	< 0.01	
7	拟建 DSA 机房北侧(控制室)	0.08	< 0.01	
8	拟建 DSA 机房楼上(净化机房)	0.08	0.01	
9	拟建 DSA 机房楼下(镜房)	0.09	< 0.01	
10	拟建 DSA 机房楼下(水处理隔间)	0.09	< 0.01	
11	拟建 DSA 机房楼下(洗镜间)	0.09	< 0.01	
12	12 拟建 DSA 机房楼下(医护走道)		< 0.01	
13	13 拟建 DSA 机房楼下(内镜室)		< 0.01	
备注:检测结果包含仪器在检测点处的宇宙射线响应值(0.03μGy/h)。				

根据《中国环境天然放射性水平》(1995),北京市天然辐射水平范围为60~123nGy/h(室外,含宇宙射线)和69.8~182nGy/h(室内,含宇宙射线)。由表 8-2 中检测结果可知,拟建辐射工作场所及周围的辐射剂量率范围为0.07~0.09μGy/h,因此,本项目场所室内辐射剂量率水平处于北京市室内γ辐射剂量率正常本底范围之内,未发现有异常高值。

表 9 项目工程分析与源项

9.1 工程设备和工艺分析

9.1.1 工作原理

血管造影机为采用 X 射线进行成像的技术设备,主要由 X 射线管、高压电源和数字平板探测器等组成,是利用人体不同的组织或者组织与造影剂密度的差别,对 X 射线吸收能力不同的特点,透射人体的 X 线使数字平板探测器显影,来间接观察内脏形态的变化、器官活动情况等,辅助临床诊断。目前主要有两种诊断方法:即透视和摄影。

血管造影机 (DSA) 是计算机与常规血管造影相结合的一种检查方法,是集电视技术、数字平板探测器、数字电子学、计算机技术、图像处理技术多种科技手段于一体的系统。DSA 主要采用时间减影法,即将造影剂未达到欲检部位前摄取的蒙片与造影剂注入后摄取的造影片在计算机中进行数字相减处理,仅显示有造影剂充盈的结构,具有高精密度和灵敏度。

DSA 适用于心血管、神经系统及全身血管造影和外周介入治疗,本项目医保 1 室的 DSA 设备主要用于开展心血管、脑血管、外周介入手术等。

其典型设备如图 9-1 所示。

图 9-1 血管造影机典型设备图

9.1.2 操作流程

血管造影机 (DSA) 诊疗时患者仰卧并进行经皮静脉穿刺,送入引导钢丝及扩张管与外鞘,退出钢丝及扩张管将外鞘保留于静脉内,经鞘插入导管,推送导管,在X线透视下将导管送达检查治疗部位施行探查、治疗,并留X线片记录,探查结束,撤出导管,穿刺部位止血包扎。

血管造影机(DSA)操作流程及产污环节如下图所示。

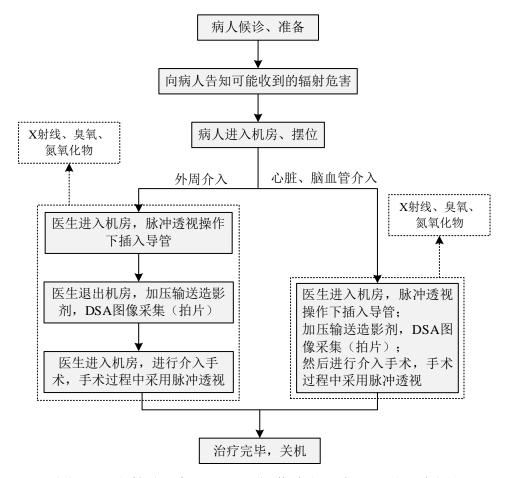


图 9-2 血管造影机 (DSA) 操作流程及产污环节示意图

- (1) 医生根据患者预约安排手术,并在手术前告知患者在手术过程中可能 受到一定的辐射照射。
- (2)病人由专职人员通过受检者防护门接入检查室,在医生指导下进行摆位,在确认手术室内没有无关人员滞留后,关闭防护门。
- (3) 对患者进行无菌消毒、麻醉后, 经穿刺静脉, 送入引导钢丝及扩张管与外鞘, 经鞘插入导管。医生利用脚踏板开关启动 X 射线系统进行透视。进行过程中医生穿戴铅衣、铅围脖、佩带铅眼镜等个人防护用品进行防护。

出東时间与手术性质(如心血管、脑血管、外周介入手术等)和医生手术水平有关,每台手术累计透视时间多为十几分钟。

- (4)导管到位后,对患者注射造影剂,开启设备,摄影采集图像。进行过程中,根据诊疗需要,医生或在控制室进行隔室摄影,或在床旁进行摄影。每台介入手术的摄影时间为1~2分钟。
 - (5) 介入手术完成后,拔管按压穿刺部位后包扎,关闭射线装置。

工作量预计:本次通州院区医保1室启用后预计年手术量约500例,建成后全院总共年手术量约12000例。本项目医师、技师利用现有人员,同时拟新增1名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至89名(其中56名医师、16名技师和17名护士),按照每台DSA每组2名医师、1名技师、1名护士配备,全院参与轮班的医师平均可分为28组,每组平均年手术量约429例,每月最多36例手术(每天最多2例),但考虑到DSA设备发生故障及将来手术量增加等情况,本项目年手术量保守按1000例(平均每天4例)评价,平均每组医师(2名)年手术量最大约500例,故本项目保守按每名医师全年手术量500例进行剂量估算。

9.2 污染源描述

9.2.1 主要放射性污染物

- (1)由X射线装置的工作原理可知,X射线是随机器的开、关而产生和消失。因此,本项目使用的X射线装置在非诊断状态下不产生射线,只有在开机并处于出线状态时才会放射X射线。因此,在开机期间,X射线成为污染环境的主要因子。射线装置在运行时无其它放射性废气、废水和固体废弃物产生。
 - (2) 主要放射性污染因子: X 射线贯穿辐射。

9.2.2 污染途径

(1) 正常工况时的污染途径

X 射线装置主要的放射性污染是 X 射线,污染途径是 X 射线外照射。 X 射线装置只有在开机并处于出束状态时才会发出 X 射线。在开机出束时,有用束和漏射、散射的 X 射线对周围环境造成辐射污染。在 X 射线装置使用过程中, X 射线贯穿机房的屏蔽设施进入外环境中,将对操作人员及机房周围人员造成辐射影响。此外, X 射线与空气作用产生极少量的臭氧、氮氧化物等有害气体, 但

由于该项目血管造影机工作时的管电压、管电流较小,因此产生的臭氧和氮氧化
物也较少。
(2) 事故工况的污染途径
1)射线装置发生控制系统或电器系统故障或人员疏忽,造成管电流、管电
压设置错误,使得受检者或工作人员受到超剂量照射。
2)人员误入机房受到辐射照射。

表 10 辐射安全与防护

10.1 项目安全设施

10.1.1 项目建设内容

本项目拟在医院通州院区干保医技综合楼 4 层新建 1 间医保 1 室及相关场所,并新增使用 1 台 DSA。

机房北墙为控制室,东墙南段与控制室拟设置铅玻璃观察窗和连通门 M1(称控制室门 M1),机房与南墙设置与患者连通门 M2(称受检者门 M2),机房与西墙污物走廊拟设置污物门 M3(称污物门 M3)。检查床拟呈南北向居中放置,头部拟朝南,床旁拟设置铅防护帘,床上方拟设置悬挂铅玻璃防护屏,DSA管球根据手术需要可在医保 1 室内进行移动;工作人员拟同室近台和位于控制室操作设备,手术前工作人员穿戴防护用品并刷手后经控制室门 M1 进入医保 1 室,患者从受检者门 M2 进入医保 1 室,手术后污物从污物门 M3 移出至污物间。

工作人员同室近台和位于控制室操作设备,DSA 摄影曝光时,除存在临床不可接受的情况外工作人员均拟回到控制室进行操作,DSA 透视曝光时,医师在手术间内近台操作,护士和技师通常不在手术间内。机房拟采用中央空调通风,不设采光窗。机房拟采取的屏蔽防护设施见下表。

序号	场所名称	机房有效面积	屏蔽墙体方向	屏蔽材料及厚度
		医保 1 室 66.64 m² (9.8m× 6.8m)	四周墙体	3.5mm 铅板
			控制室门 M1	3mmPb 防护门
			(门上设观察窗)	(3mmPb 铅当量的铅玻璃)
			受检者门 M2	3mmPb 防护门
			(门上设观察窗)	(3mmPb 铅当量的铅玻璃)
			污物门 M3	3mmPb 防护门
1	医保1室		(门上设观察窗)	(3mmPb 铅当量的铅玻璃)
			观察窗 (控制室墙上)	3mmPb 铅当量的铅玻璃
			顶棚	120mm 混凝土楼板+30mm 厚 硫酸钡水泥
			地板	120mm 混凝土楼板+30mm 厚 硫酸钡水泥

注: 混凝土的密度不低于 2.35g/cm³; 铅密度不低于 11.34g/cm³, 硫酸钡水泥的密度不低于 2.8g/cm³。

10.1.2 工作场所安全防护设施管理

工作场所安全与防护设施设计要求见表 10-2

表 10-2 医保 1 室辐射安全与防护设施设计表

房号	检查项目		是否拟设置	备注	
1*		单独机房	$\sqrt{}$	单独机房	
2*		操作部位局部 屏蔽防护设施	V	拟新增铅悬挂防护屏/铅防护吊帘、床侧防护帘/床侧防护屏、移动铅防护屏风各1个。	
3*		医护人员的个 人防护	V	拟新增铅橡胶围裙、铅橡胶颈套各 4 件,铅防护眼镜、铅手套各 4 副。	
4*	A	患者防护	$\sqrt{}$	拟新增铅围裙、铅橡胶颈套各1件。	
5*	场所 机房门窗防护				铅防护门、铅玻璃观察窗
6*	设施	闭门装置	V	受检者门 M2 为电动推拉门;控制室门 M1、污物门 M3 为手动平开门,拟配自闭器。	
7*		入口处电离辐 射警告标志	V	门上粘贴电离辐射警示标志	
8*		入口处机器工 作状态显示	\checkmark	门上拟安装工作状态指示灯	
9*	В	监测仪器	\checkmark	利用现有的1台便携式辐射巡测仪	
10*	监测	个人剂量计	√	所有工作人员配备 TLD 个人剂量计	
11	设备	腕部剂量计	×	/	
注. †	注、加*的项目具重占项。有"设计建造"的划划。没有的划划。不适用的划/				

|注:加*的项目是重点项,有"设计建造"的划√,没有的划×,不适用的划/。

10.1.3 机房辐射防护措施

- (1) 机房采取实体屏蔽措施, 医保 1 室设计的防护能力和评价依据对照情况 见表 10-3,满足 GBZ130-2020 标准相关要求,保证工作人员和公众的受照剂量 满足环评文件提出的剂量约束要求。
- (2) 辐射工作场所实行控制区和监督区分区管理。机房出入口内的所有区域 为控制区,医保1室东侧控制室、耗材间,西侧缓冲1,北侧设备间、耗材间为 监督区。
- (3) 受检者门 M2 设为有自动延时关闭和防夹保护功能的电动平移门,拟在邻近受检者门墙上设置脚控开关,用于控制机房门的开启和关闭,防夹装置为红外感应。控制室门 M1、污物门 M3 均为手动平开门,拟设置自闭器。为防止 X 射线机在运行过程中其他人员误入机房而受到不必要的照射,拟在该项目涉及的 3 扇防护门外醒目位置设置电离辐射警告标志,并拟在防护门外上方安装工作状态指示灯,指示灯标志牌上拟设警示语"射线有害,灯亮勿入"。工作状态指示灯拟与控制室门关联,指示灯电源拟与设备低压供电线路连接,当设备开启且工作人员门关闭时,工作状态指示灯均亮起,当工作人员门打开时,工作状态指示灯均熄灭。

- (4) 每台 DSA 设备诊疗床上的控制台面拟设置急停按钮。
- (5) 辐射工作人员均佩带个人剂量计。
- (6) 机房内拟设有语音提示系统,并在医保1室北墙上设有观察窗。
- (7) 机房操作部位局部拟采取下列屏蔽防护设施: 医保 1 室拟新配备手术床的床上悬挂可移动 0.5mm 铅当量的铅悬挂防护屏/铅防护吊帘 1 个、床侧悬挂含 0.5mm 铅当量的床侧防护帘/床侧防护屏 1 个,同时拟新增 2mm 铅当量的移动式铅防护屏风 1 个,用于阻挡散、漏射线对辐射工作人员的照射。
- (8) 医院拟配备符合防护要求的辅助防护用品: 拟新配工作人员防护用品,包括前 0.5mm、后 0.25mm 铅当量的铅橡胶围裙、铅橡胶颈套各 4 件,0.25mm 铅当量的铅眼镜 4 副,0.025mm 铅当量的铅手套 4 副。同时为受检者新配备防护用品,包括 0.5mm 铅当量的铅橡胶围裙、铅橡胶颈套各 1 件。机房个人防护用品和辅助防护设施配置情况见表 10-4,满足 GBZ130-2020 标准相关要求。
- (9) 本项目拟利用现有的 1 台便携式辐射巡测仪,用于医保 1 室开展自行监测。
- (10) 医保 1 室拟采用中央空调进行通风,防止机房空气中臭氧和氮氧化物等有害气体累积。
 - (11) 家属等候区拟设置放射防护知识宣传栏。
 - (12) 机房配备火灾报警系统,配有灭火用品。 医保1室辐射安全设施布置及分区图见图 10-1。

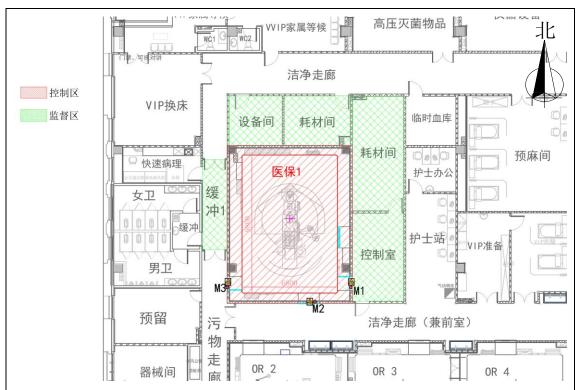


图 10-1 医保 1 室辐射安全设施布置及分区图

表 10-3 医保 1 室的防护能力和评价依据对照情况

场所 名称	屏蔽墙体方向	屏蔽材料及厚度	等效铅 当量	标准 要求	是否符合 标准要求
	四周墙体	3.5mm 铅板	3.5mm	2mm	是
	控制室门 M1 (门上设观察窗)	3mmPb 防护门 (3mmPb 铅当量的铅玻璃)	3mm	2mm	是
	受检者门 M2 (门上设观察窗)	_ ,		2mm	是
医保 1	污物门 M3 (门上设观察窗)	3mmPb 防护门 (3mmPb 铅当量的铅玻璃)	3mm	2mm	是
	观察窗 (控制室墙上)	3mmPb 铅当量的铅玻璃	3mm	2mm	是
	顶棚	120mm 混凝土楼板+30mm 厚 硫酸钡水泥	3.5mm	2mm	是
	地板	120mm 混凝土楼板+30mm 厚 硫酸钡水泥	3.5mm	2mm	是
机房有效尺寸: 9.8m×6.8m, 有效面积 66.64 m² (标准要求: 最小有效使用面积 不小于 20 m²; 机房内最小单边长度不小于 3.5m)。					是

注:①参照 GBZ130 表 C:对于 DSA:100kV(有用线束)情况下 70mm 混凝土相当于 1mmPb,又参照《医用辐射危害控制与评价》表 5-4,对于 DSA: 100kV 情况下 80mm 混凝土相当于 1mmPb;②硫酸钡水泥铅当量参照"硫酸钡检测报告"(见附件)中数据: 10mm 钡水泥相当于 1mmPb。综上,本项目保守取 80mm 混凝土相当于 1mmPb、15mm 硫酸钡水泥相当于 1mmPb 进行评价。铅当量等效折算参考材料见附件。

表 10-4 介入放射学操作个人防护用品和辅助防护设施配置情况

/	工作	卡人员	患者和受检者	
	个人防护用品	辅助防护设施	个人防护用品	辅助防 护设施
标准要求	铅橡胶围裙、铅橡胶颈 套、防护手套、铅防护 眼镜。 选配:铅橡胶帽子	铅悬挂防护屏/铅防护吊 帘、床侧防护帘/床侧防护 屏。 选配:移动铅防护屏风	铅橡胶性腺防护围 裙(方形)或方巾、 铅橡胶颈套。 选配:铅橡胶帽子	_
机房配备情况	拟新增铅橡胶围裙、铅 橡胶颈套各4件,铅防 护眼镜、铅手套各4副	拟新增铅悬挂防护屏/铅 防护吊帘、床侧防护帘/ 床侧防护屏、移动铅防护 屏风各1个	拟新增铅橡胶围 裙、铅橡胶颈套各 1 件	_
是否符 合要求	是	是	是	_

10.1.4 法规符合情况

依据《放射性同位素与射线装置安全许可管理办法》和《放射性同位素与射线装置安全和防护管理办法》规定,现对医院从事本项目辐射活动能力评价列于表 10-5 和表 10-6。

10.1.4.1 对照《放射性同位素与射线装置安全许可管理办法》要求的满足情况

表 10-5 汇总列出了本项目对照《放射性同位素与射线装置安全许可管理办法》对使用放射性同位素和射线装置单位承诺的对应检查情况。

表 10-5 项目执行《放射性同位素与射线装置安全许可管理办法》要求对照表

序号	要求	本单位落实情况	是否符 合要求
1	应当设有专门的辐射安全与环境保护管理机构,或者至少有1名具有本科以上学历的技术人员专职负责辐射安全与环境保护管理工作。	已成立辐射防护领导小组,并在该 机构设置专职管理人员。	符合
2	从事辐射工作的人员必须通过辐射 安全和防护专业知识及相关法律法 规的培训和考核。	本项目医师、技师利用现有人员,同时拟新增1名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至89名(其中56名医师、16名技师和17名护士)。全院介入辐射工作人员均拟参加辐射安全和防护专业知识考核,取得合格证后方能上岗。	落实后符合
3	使用放射性同位素的单位应当有满 足辐射防护和实体防卫要求的放射 源暂存库或设备。	本项目不涉及放射性同位素。	/
4	放射性同位素与射线装置使用场所 有防止误操作、防止工作人员和公众 受到意外照射要求的安全措施。	拟修订完善相应的操作规程,人员 出入口处拟设置电离辐射警告标 志和工作状态指示灯等。	落实后 符合

5	配备与辐射类型和辐射水平相适应 的防护用品和监测仪器,包括个人剂 量监测报警、辐射监测等仪器。	辐射工作人员拟配备个人剂量计, 拟利用现有的 1 台便携式辐射巡 测仪开展自行监测。	落实后 符合
6	有健全的操作规程、岗位职责、辐射 防护和安全保卫制度、设备检修维护 制度、放射性同位素使用登记制度、 人员培训计划、监测方案等。	拟完善规章制度,如射线装置操作规程、岗位职责及辐射防护和安全保卫制度、射线装置检修维护制度、人员考核计划、监测方案等。	落实后符合
7	有完善的辐射事故应急措施。	己制定辐射事故应急措施。	符合
8	产生放射性废气、废液、固体废物的,还应具有确保放射性废气、废液、固体废物达标排放的处理能力或者可行的处理方案。	本项目不涉及。	/

10.1.4.2 对《放射性同位素与射线装置安全和防护管理办法》要求的满足情况

《放射性同位素与射线装置安全和防护管理办法》对拟使用射线装置和放射性同位素的单位提出了具体条件,本项目具备的条件与《放射性同位素与射线装置安全和防护管理办法》要求的对照检查如表 10-6 所示。

表 10-6 项目执行《放射性同位素与射线装置安全和防护管理办法》要求对照表

序号	安全和防护管理办法要求	本单位落实情况	是否符 合要求
1	第五条 生产、销售、使用、贮存放射性同位素 与射线装置的场所,应当按照国家有关 规定设置明显的放射性标志,其出口处 应当按照国家有关安全和防护标准的 要求,设置安全和防护设施以及必要的 防护安全联锁、报警装置或者工作信 号。	机房拟设置醒目的电离辐射警告标志及配有"当心电离辐射"的中文警示说明。机房拟安装门-灯联锁安全装置及工作警示灯。	落实后符合
2	第七条 放射性同位素和被放射性污染的物品 应当单独存放,不得与易燃、易爆、腐 蚀性物品等一起存放,并指定专人负责 保管。	本项目不涉及放射性同位素。	不涉及该内容
3	第九条 生产、销售、使用放射性同位素与射线 装置的单位,应当按照国家环境监测规 范,对相关场所进行辐射监测,并对监 测数据的真实性、可靠性负责;不具备 自行监测能力的,可以委托经省级人民 政府环境保护主管部门认定的环境监 测机构进行监测。	拟委托有辐射水平监测资质单 位每年对辐射工作场所及其周 围环境进行1次监测。	落实后符合
4	第十二条 生产、销售、使用放射性同位素与射线 装置的单位,应当对本单位的放射性同 位素与射线装置的安全和防护状况进 行年度评估,并于每年1月31日前向发 证机关提交上一年度的评估报告。	承诺每年1月31日前向生态环 境部门提交年度评估报告。	近期 符合

5	第十七条 生产、销售、使用放射性同位素与射线 装置的单位,应当按照环境保护部审定 的辐射安全培训和考试大纲,对直接从 事生产、销售、使用活动的操作人员以 及辐射防护负责人进行辐射安全培训, 并进行考核;考核不合格的,不得上岗。	本项目医师、技师利用现有人员,同时拟新增1名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至89名(其中56名医师、16名技师和17名护士)。全院介入辐射工作人员均拟参加辐射安全和防护专业知识考核,取得合格证后方能上岗。	落实后符合
6	第二十三条 生产、销售、使用放射性同位素与射线 装置的单位,应当按照法律、行政法规 以及国家环境保护和职业卫生标准,对 本单位的辐射工作人员进行个人剂量 监测;发现个人剂量监测结果异常的, 应当立即核实和调查,并将有关情况及 时报告辐射安全许可证发证机关。	为所从事放射性工作的人员配备个人剂量计,并委托有资质单位进行个人剂量监测(每季度1次)。	落实后符合
7	第二十四条 生产、销售、使用放射性同位素与射线 装置的单位,不具备个人剂量监测能力 的,应当委托具备条件的机构进行个人 剂量监测。	委托有资质单位对新增的辐射 工作人员进行个人剂量监测。	落实后符合

10.2 三废的治理

本项目中主要开展使用射线装置,项目运行过程中不产生放射性废物。

表 11 环境影响分析

11.1 建设期环境影响

该项目施工活动对环境的影响主要是机房建设和 DSA 安装过程中产生的噪声、粉尘以及振动等,为了不影响周围环境,在施工过程中,将采取一些降噪、防尘措施。如在施工现场设置隔离带、设立声障,这样既可有效的减少扬尘的污染,又可降低噪声;合理安排施工时间,对振动较大的施工,尽量安排在下班或节假日进行。本项目是拟利用现有机房新建医保 1 室及相关场所,工程量小,且施工基本上都在医院内进行,并且项目所在地区的地面已经过硬化,无裸露地面,因此产生的扬尘相对较小,因此基本不影响单位和周围其他单位的正常工作。

11.2 血管造影机运行(使用)后对环境影响

11.2.1 机房所在位置及平面布局合理性分析

拟建的医保1室及相关场所位于医院新建的通州院区干保医技综合楼4层, 医保1室距周围环境敏感点较远,50m 范围内除了西侧23m 处为潞通新路之外, 其它方向50m 评价范围内均为医院内部,无学校、居民楼、养老院等敏感目标, 无商场等人员密集场所。

本项目将划分为控制区和监督区进行管理。机房出入口内的所有区域为控制区,机房出入口内的所有区域为控制区,医保1室东侧控制室、耗材间,西侧缓冲1,北侧设备间、耗材间为监督区。两区分区合理,符合辐射防护要求。

由项目所在楼层及医保1室平面布局可见,与射线装置相关的各辅助用房紧密布置于射线装置机房周围,整体布局紧凑,且患者通道、医护人员路线相对合理,有利于辐射防护。机房墙体、防护门、观察窗、楼板的屏蔽防护材料和厚度充分考虑了防护效果,能够有效降低电离辐射对工作人员和周围公众的辐射影响。

综合分析,本项目两区划分明确,平面布局既满足介入诊疗工作要求,又有利于辐射防护,评价认为本项目平面布局合理。

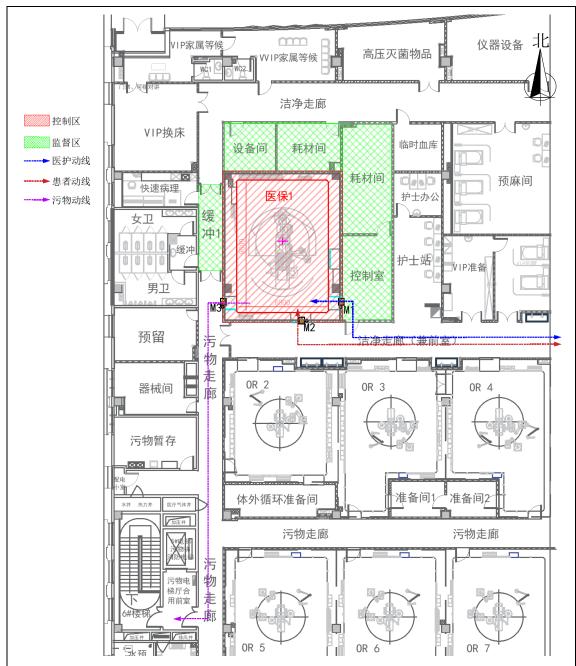


图 11-1 医保 1 室分区和路由平面布局图

11.2.2 设备参数和使用规划

(1) 设备技术参数

本项目拟新增使用 1 台血管造影机 (DSA), 该设备型号为 Allia IGS 7, 生产厂家为 GE, 最大管电压为 125kV, 最大管电流不大于 1000mA。

(2) 使用规划

本项目拟在医院新建的通州院区干保医技综合楼 4 层新建 1 间医保 1 室及相关场所,并新增使用 1 台 DSA。

本次通州院区医保1室启用后预计年手术量约500例,建成后全院总共年手

术量约 12000 例。本项目医师、技师利用现有人员,同时拟新增 1 名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至 89 名(其中 56 名医师、16 名技师和 17 名护士),按照每台 DSA 每组 2 名医师、1 名技师、1 名护士配备,全院参与轮班的医师平均可分为 28 组,每组平均年手术量约 429 例,每月最多 36 例手术(每天最多 2 例),但考虑到 DSA 设备发生故障及将来手术量增加等情况,本项目年手术量保守按 1000 例(平均每天 4 例)评价,平均每组医师(2 名)年手术量最大约 500 例,故本项目保守按每名医师全年手术量 500 例进行剂量估算。

综上,根据经验数据,DSA 典型手术类型、工作量、曝光时间见表 11-1。

手术类型	透视时间(min)	摄影时间(min)
冠状动脉造影+放置支架	12	1
心脏射频消融、心内起搏器植入	5	0.5
先心病介入治疗	5	1
脑血管介入	10	1
外周血管造影	10	2

表 11-1 DSA 手术类型、手术曝光时间预计

根据美国NCRP147报告,心脏血管造影比外周血管造影的工作负荷、泄漏辐射与侧向散射的空气比释动能都大,因此本项目透视以心脏血管造影模式和摄影以外周介入治疗的工况进行估算,其单台手术透视和摄影工作状态的累积出束时间分别为12min和2min,500例手术透视和摄影工作状态的累积出束时间分别100h和16.7h,总计116.7h。

11.2.2 辐射环境影响评价

11.2.2.1 机房外剂量率估算

手术中DSA设备运行分透视和摄影(采集)两种模式。设备具有自动调强功能,能根据患者条件等差异,自动调节曝光参数和X射线辐射剂量。即如果受检者体型偏瘦,管电流(功率)自动降低。反之管电流(功率)自动增强。

DSA设备的额定功率约80~100kW。为了防止球管烧毁并延长其使用寿命,DSA设备管电压和管电流都留有较大余量,实际使用时管电压通常在100kV以下,透视管电流通常为几十mA,摄影功率较大,管电流通常为几百mA,相差可达50倍,因此在估算DSA机房外剂量率时需使用摄影工况。另外,NCRP147报告4.1.6章节指出,DSA屏蔽估算时不需要考虑主束照射,只需考虑散漏射线的影

响,机房外人员受到的贯穿辐射来自于X射线管球的泄漏辐射与介入患者的散射辐射。对于机房外四周关注点,考虑泄漏辐射和患者的侧向散射,对于机房楼上和楼下关注点则考虑泄漏辐射和患者的前/背向散射。因此在估算机房外关注点剂量率时需首先确定机房内患者1m处未屏蔽次级散漏辐射水平。

本项目DSA设备透视和摄影均采用脉冲模式,计算机房外剂量率水平时保守按100kV、500mA、15帧/s、10ms/帧的摄影工况考虑,可得每名患者工作负荷为500mA×15帧/s×0.01s/帧×2min+10mA×12min=270mA•min(保守取透视平均电流为10mA),远大于NCRP147报告中心血管造影给出的最大160mA•min/患者的要求,因此本项目的估算条件是保守的。

(1) 散射辐射+泄漏辐射

$$H = \frac{H_0}{R^2} \times B \times \frac{F \times \alpha}{400 \times R_0^2} \tag{11-1}$$

式中: H—预测点位的散射辐射剂量率, μ Gy/h;

 H_0 —为距DSA设备靶点1m处的剂量率,μGy/h;

R—散射面中心点到关注点的距离, m;

B—已知屏蔽墙厚度的衰减因子;

 R_0 —辐射源点(靶点)至散射体的距离,0.6m;

F— R_0 处的辐射野面积, m^2 (取400cm²);

α—散射因子,定义为入射辐射被面积为400cm²水模体散射至1m处的相对份额,依据《辐射防护手册》<第一分册 辐射源与屏蔽>(李德平 潘自强 主编)表10.1,取100kV X线90°方向400cm²的散射因子1.3×10⁻³。

根据 NCRP147 报告 100kV 设备有用线束距焦点1m 处输出量约为4.692mGy/mA·min,则设备在上述摄影工况时有用束的剂量率为4.692mGy/mA·min×500mA×60min/h×15帧/s×0.01s/帧=21.1Gy/h(不考虑DSA附加的Cu和Al过滤材料的自吸收),设备靶点至接收器最小距离多为90cm,距离手术床的距离最小为60cm,则摄影工况下,1m处侧向散射辐射剂量率为76.2mGy/h。泄漏辐射取有用束输出量的0.1%,为21.1mGy/h,则机房内辐射源1m处泄漏辐射和侧向散射辐射总的剂量率为97.3mGy/h。

故本项目在估算机房周围附加剂量率水平时,以1m处剂量率97.3mGy/h作为源项,保守估算DSA机房周围的附加剂量率水平。

(2) 场所周围的附加剂量率水平

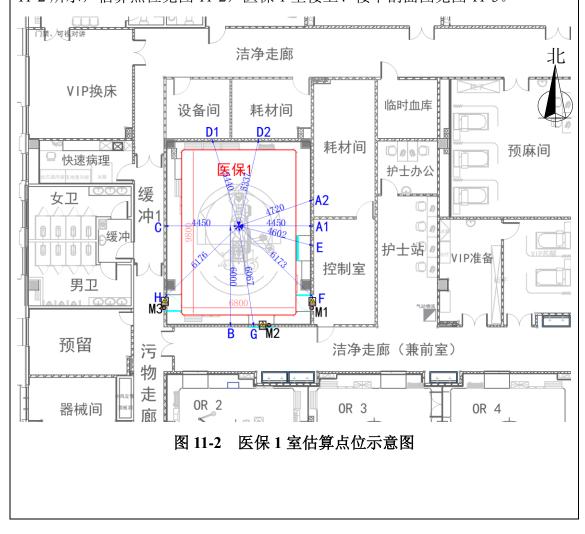
机房外关注点的剂量率可按下式计算:

$$H = H_0 \times B/R^2 \tag{11-2}$$

$$B = \left[\left(1 + \frac{\beta}{\alpha} \right) e^{\alpha \gamma x} - \frac{\beta}{\alpha} \right]^{-\frac{1}{\gamma}}$$
 (11-3)

式中: H_0 —距散射体(患者)1m处的泄漏和散射辐射剂量率, μ Gy/h;

R—散射面中心点到关注点的距离, m;


B--屏蔽体衰减因子:

χ—某种屏蔽材料的厚度;

 α 、 β 、 γ —与不同屏蔽材料有关的三个拟合参数。

由于GBZ130-2020没有针对血管造影机的拟合参数值,故本项目拟合参数取 NCRP147报告心脏血管造影模式下的相关参数(混凝土: 0.0371、0.1067、0.5733, 铅: 2.354、14.94、0.7481)。

根据上述估算方法得出摄影工况下医保 1 室周围的剂量率估算结果如表 11-2 所示,估算点位见图 11-2,医保 1 室楼上、楼下剖面图见图 11-3。

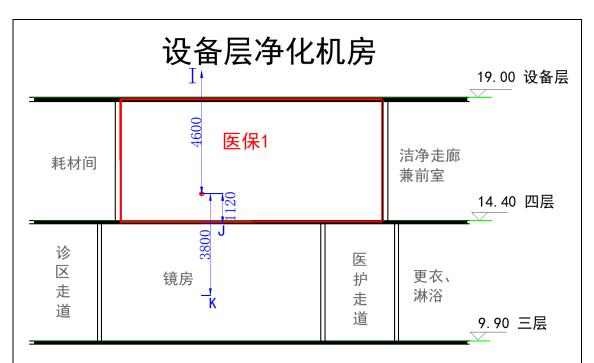


图 11-3 医保 1 室楼上、楼下南北向剖面图

表 11-2 摄影工况下医保 1 室周围辐射剂量水平估算结果

估算 场所	估算 位置	编号	屏蔽材料及厚度	衰减因子 (K ⁻¹)	射线束	距离 /m	屏蔽后附加剂量率 μGy/h	备注
	东墙外	A1	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	4.8	7.78E-02	控制室
	东墙外	A2	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	5.0	7.17E-02	耗材间
	南墙外	В	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	6.3	4.51E-02	洁净走廊 (兼前室)
	西墙外	С	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	4.8	7.78E-02	缓冲1
	北墙外	D1	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	5.7	5.52E-02	设备间
医保	北墙外	D2	3.5mm 铅板	1.84E-05	泄漏+侧 向散射	5.6	5.71E-02	耗材间
1室	观察窗 (控制 室墙)外	Е	3mm 铅板	6.00E-05	泄漏+侧 向散射	4.9	2.43E-01	控制室
	控制室 门 M1 外	F	3mmPb 铅玻璃	6.00E-05	泄漏+侧 向散射	6.5	1.38E-01	控制室
	受检者 门 M2 外	G	3mmPb 防护门	6.00E-05	泄漏+侧 向散射	6.4	1.42E-01	洁净走廊 (兼前室)
	污物门 M3 外	Н	3mmPb 防护门	6.00E-05	泄漏+侧 向散射	6.5	1.38E-01	污物走廊
	楼上	Ι	120mm 混凝土楼 板+30mm 厚硫酸 钡水泥(3.5mmPb 铅当量)	1.84E-05	泄漏+前/背向散射	4.6	8.47E-02	设备层净化 机房

	楼下	J	120mm 混凝土楼	1.84E-05	泄漏+前/ 背向散射	1.5	7.96E-01	镜房(内镜 器械室)、洗
	楼下	K	板+30mm 厚硫酸 钡水泥(3.5mmPb 铅当量)	1.84E-05	泄漏+前/ 背向散射	4.1	1.07E-01	镜室、水处 理隔间、医 护走道、内 镜室

备注: ①泄漏和侧向散射\泄漏和前/背向散射 1m 处剂量率取 9.73E+04μGy/h;

从上述估算结果可知,DSA 正常摄影工况下,医保 1 室外周围附加剂量率最大值为 7.96E-01μGy/h,满足本项目所设定的机房屏蔽体外 30cm 处 2.5μSv/h的剂量率控制水平,根据剂量率与距离平方成反比以及评价范围内固有建筑物的屏蔽,则在医保 1 室周围 50m 评价范围内西侧 23m 处潞通新路等其他场所公众长居留场所的剂量率远小于 2.5μSv/h。上述剂量率的计算是基于保守假设进行的,实际工作中 X 射线机运行参数要小于 100kV/500mA,且患者身体对 X 射线会有部分的吸收,约衰减 1-2 个量级(NCRP147 号报告),预计实际运行时,机房周围的剂量率水平可以维持在正常本底水平。

11.2.2.2 年附加剂量估算

(1) DSA 同室操作位剂量水平

依相关标准要求,工作人员在同室操作时,应合理穿戴个人防护用品、使用相关防护设施,并在满足诊疗要求的前提下尽量缩短曝光时间,对术者位剂量率的取值如下:

①透视模式

参照《医用 X 射线诊断设备质量控制检测规范》(WS76-2020)表 B.1 和图 I.3 规定:透视防护区检测平面上周围剂量当量应不大于 400μSv/h。除存在临床不可接受的情况外,摄影工况图像采集时工作人员应尽量不在机房内停留。

本评价取标准要求的上限值保守考虑,医生手术位置的附加剂量率水平为 400μSv/h,居留因子为1(全部居留)。

②采集模式

采集模式时,采用脉冲模式,剂量率与帧数成正比。参考帧数较高的心脏模式条件:15 帧/s、10ms/帧,采集时电流与透视时电流之比取50(500mA/10mA),假设采集与透视时 kV 相同(按90kV考虑),则采集产生的剂量率与透视产生的剂量率之比为7.5((500mA×15 帧/s×0.01s/帧)/(10mA×1s)),故本评价采用标

②医保 1 室保守以心脏血管造影模式进行估算, B 均取 NCRP147 报告心脏血管造影模式下的衰减因子。心脏血管造影模式下的相关参数(混凝土: 0.0371、0.1067、0.5733,铅: 2.354、14.94、0.7481)。

准要求的透视时术者位剂量率上限值保守考虑,即处于同室状态的工作人员在采集时(摄影模式)术者位剂量率为 3000μSv/h。

只有在临床不可接受的情况下,医护人员在摄影时才在机房内停留。做心脏 介入手术时,医生会在摄影图像采集时在机房内停留,开展其它手术时医生在摄 影图像采集时均会离开机房,故居留因子保守取 1/4。

(2) 年附加剂量估算公式

①同室操作

本项目依照 GBZ128-2019《职业性外照射个人监测规范》评价术者的受照剂量评价模式,考虑裸漏部位和屏蔽部位受照的综合剂量。据 GBZ128-2019 中第6.2.4条,外照射致有效剂量计算公式为:

$$E_{\Box \Xi} = \alpha H_u + \beta H_0 \tag{11-4}$$

式中: $E_{\theta \hat{z}}$ —同室操作外照射致年有效剂量,单位为 mSv;

 α —系数,取 0.79 同室(有甲状腺屏蔽);

 H_u —铅防护用品内佩戴的个人剂量计测得的 Hp(10), 单位为 mSv;

β—系数,取 0.051 (有甲状腺屏蔽);

Ho—铅防护用品外锁骨对应的衣领位置佩戴的个人剂量计测得的 Hp(10),单位为 mSv。

根据 GBZ130-2020,工作人员采取铅衣(0.5mm 铅当量)屏蔽措施,在透视和摄影时,衰减系数约为 0.025,Ho 和 H_u 本次均采用剂量率乘以年受照时长计算,其中 Ho 对应剂量率为术者位剂量率上限值(400 μ Sv/h), H_u 对应剂量率为经过个人防护用品屏蔽后的(0.5mmPb 铅衣、铅颈套等)术者位剂量率估算值,即计算 Ho 时,透视模式和采集模式对应剂量率为 400 μ Sv/h 和 3000 μ Sv/h,计算 H_u 时,透视模式和采集模式对应剂量率为 10 μ Sv/h 和 75 μ Sv/h。

(2)隔室操作

附加年有效剂量计算公式:

$$E = D \times t \times T \times K \tag{11-5}$$

式中: E—年有效剂量, μSv ;

D—计算点附加剂量率, μ Gy/h;

t—DSA 年出東时间, h/a;

K—有效剂量与吸收剂量换算系数,Sv/Gy,本项目取 1.0;

T—居留因子,参考《辐射防护手册》<第三分册 辐射安全>(李德平 潘自强 主

编)P80,居留因子 T 按三种情况取值: (1) 全居留因子 T=1, (2) 部分居留 T=1/4, (3) 偶然居留 T=1/16。

(3) 工作人员年附加有效剂量

该项目 DSA 摄影曝光时,医师除存在临床不可接受的情况外均回到操作间进行操作,DSA 透视曝光时,医师在手术间内近台操作;护士为辅助人员,透视时偶然会在机房内,透视居留因子取 1/16,系列采集时都在操作间,技师都在操作间操作,不在 DSA 手术室内。

本项目每台手术通常由 2 名医师、1 名技师、1 名护士组成,根据医院提供资料,每个医师在 DSA 设备上的年工作量最多不超过 500 台相关手术,年累积透视时间 100h,摄影时间为 16.7h。

职业人员附加年有效剂量估算结果见表 11-3,其中机房外透视情况下的剂量率取摄影工况下剂量率的 1/10 (根据前文所述,采集产生的剂量率与透视产生的剂量率之比为 7.5,本项目保守取 10 进行评价)。可见,介入工作人员的年受照剂量低于本项目设定的 5mSv 的年剂量约束值。

	ſ	古算对象		剂量率 D (μGy/h)	工作时间 t (h/a)*	居留 因子 <i>T</i>	年附加 有效剂量 <i>E</i> (μSv)
			透视(铅衣内)	10	100	1	
	术者	机房内	透视(铅衣外)	400	100	1	3716.1
	(医生)	机房内	摄影(铅衣内)	75	16.7	1/4	
			摄影(铅衣外)	3000	16.7	1/4	
医保1		補助人员 机房内 (护士) 机房外	透视(铅衣内)	10	100	1/16	
室	辅助人员		透视(铅衣外)	400	100	1/16	219.4
	(护士)		透视	7.96E-02	200	1	219.4
			摄影	7.96E-01	33.4	1	
	控制室	机房外	透视	7.96E-02	200	1	12.5
	(技师)	かい方グド	摄影	7.96E-01	33.4	1	42.5

表 11-3 工作人员的年附加有效剂量

备注:①机房外的工作时间按每年最大手术量 1000 例修正,护士、技师机房外透视和摄影时间保守取 200h 和 33.4h;②机房外剂量率以楼下 J(镜房(内镜器械室)、洗镜室、水处理隔间、医护走道、内镜室)点处的附加剂量保守估算,其中机房外透视情况下的剂量率取摄影工况下剂量率的 1/10。

本项目技师和护士在射线出東时都是位于机房外隔室防护,医保 1 室年附加有效剂量不大于 219.4μSv,介入治疗医师的年附加有效剂量均不大于 3.72mSv。本项目辐射工作人员都是按照每年的最大手术量进行估算,理论上可不考虑剂量累加情况,但根据医院提供资料,医院实行医师在三个院区长期轮转 (短期固定)、技师和护士固定的方式开展介入诊疗,医师同时参与医院其他院

区介入科室的工作,由医院提供的最近一年的个人剂量监测报告可知,辐射工作人员年附加剂量最大值为 0.806mSv/a,即使累加后也小于单位所设定的工作人员剂量管理目标值 5mSv/a 要求。

(2) 公众年附加有效剂量

根据表 11-2 的辐射工作场所外主要关注点辐射剂量率水平,同时考虑辐射工作场所外公众居留情况估算出公众的年附加剂量见表 11-4,其中透视情况下的剂量率取摄影工况下剂量率的 1/10。

估算 对象		估算位置		n剂量率 μGy/h)	年工作时间 (h/a)*	居留 因子	年附加有效 剂量(μSv)
		东墙外 A2 (耗材间)	透视	7.17E-03	200	1/16	0.24
		朱垣外 AZ(杙树间)	摄影	7.17E-02	33.4	1/16	0.24
		受检者 M2 外(洁净	透视	1.42E-02	200	1/16	0.47
		走廊兼前室)	摄影	1.42E-01	33.4	1/16	0.47
公众	医保	污物门 M3 外 (污物	透视	1.38E-02	200	1/16	0.46
\(\text{\text{A}}\)	1室	走廊)	摄影	1.38E-01	33.4	1/16	0.40
		楼下J(镜房(内镜 器械室)、洗镜室、	透视	7.96E-02	200	1	42.51
		水处理隔间、医护走 道、内镜室)	摄影	7.96E-01	33.4	1	42.51

表 11-4 公众的年附加有效剂量

备注: *机房外的工作时间按每年最大手术量 1000 例修正。

根据上述估算结果,医保 1 室外主要公众关注点年附加剂量最大值为 48.8µSv,能满足本评价剂量约束目标值 0.1mSv 的要求。根据剂量与距离平方成 反比以及评价范围内固有建筑物的屏蔽,预计医保 1 室周围其它诊疗场所的公众 长居留场所的年附加剂量将远小于 42.51µSv。

综上所述,在医保 1 室周围 50m 评价范围内工作人员和公众的年剂量能满足本评价剂量约束目标值(5mSv,0.1mSv)的要求。由此可见,工作人员防护铅衣铅当量和机房屏蔽厚度达到要求情况下,在机房内部和周围的辐射工作人员及公众所接受剂量低于剂量约束值的要求。

11.3 异常事件分析与防范建议

(1) 事件(故)分析

医用射线装置发生大剂量照射事故的几率极小。DSA射线装置在运行中,可能发生以下事件:

①人员误入机房受到不必要的照射:

②X射线装置工作状态下,没有关闭防护门,对附近经过或停留人员产生误照射。

(2) 事件(故) 防范措施

针对人员误入机房受到照射的防范措施是: 机房防护门上设置电离辐射警示标志、中文警告说明。防护门上方设置工作状态指示灯,并且和防护门联锁。当防护门关闭准备出束时,警示灯自动点亮,以警示人员别误入机房。

针对没有关闭防护门出束的防范措施是:规范工作秩序,严格执行《操作规程》和《辐射防护和安全保卫制度》,此外,辐射防护领导小组每半年一次检查安全规章和制度落实情况,发现问题及时纠正。

当射线装置出束时防护门未关闭或突然被打开,假设联锁故障,防护门附近人员将受到一定量的散射和漏射X射线照射。由于设备出束持续时间短,散射线和漏射线能量有限,加之X射线能量的距离衰减作用,此种偶发情况下人员受照剂量很小,但是容易引发医疗纠纷。一旦出现该种情况,要耐心细致给予解释,防止事态扩大化。

如果出现上述事件,迅速启动应急处理预案,依照应急预案人员和职责、事故处理原则和处理程序等进行处理。

表 12 辐射安全管理

12.1 辐射安全与环境保护管理机构的设置

12.1.1 辐射安全管理小组

医院已经设置了辐射安全与环境保护管理领导小组作为专门管理机构,并指定专人负责辐射安全与环境保护管理工作。人员构成具体情况见表 1-5 所示。辐射安全管理小组的职责包括:

- (1) 在医院辐射安全防护领导小组组长、副组长的领导下,负责本医院辐射安全防护的管理工作。
- (2) 贯彻执行国家、北京市政府部门有关法律、法规、规章、相关标准及有关规定。负责对本医院相关部门和人员进行法律、法规及相关标准的培训、教育、指导和监督检查等工作。
 - (3)制定、修订本医院辐射安全防护管理制度及仪器设备操作规程。
- (4)制定、修订辐射事故应急预案,配备相应的事故处理物资仪器室、工具,一旦发生辐射意外事故或情况,在辐射安全防护组组长的指挥下负责事故现场的应急处理工作。
 - (5) 负责办理辐射安全许可证的申请、登记、换证及年审等工作。
- (6)建立射线装置档案,组织医院有关部门和人员对使用的射线装置及剂量监测仪器进行检查和维护保养,保证正常使用。
- (7)对医院从事辐射工作的人员进行条件和岗位能力的考核,组织参加专业体检、培训并取得相应资格证。
- (8)组织实施对从事辐射工作人员的剂量监测,做好个人剂量计定期检测工作,对数据进行汇总、登记、分析等工作。做好医院年度评估报告工作,认真总结、持续改进并上报有关部门。

12.1.2 辐射工作人员

本项目医师、技师利用现有人员,同时拟新增 1 名护士到岗工作,配备后全院从事介入医、技、护的专职人员增加至 89 名 (其中 56 名医师、16 名技师和 17 名护士)。医院辐射防护负责人员、专职人员及所有辐射工作人员将在生态环境部培训平台报名参加并通过辐射安全和防护考核,经过考核合格后持证上岗,并参加每五年一次的重新考核,并制定辐射工作人员考核计划。同时按照国家相

关规定进行个人剂量监测和职业健康检查,建立个人剂量档案和职业健康监护档案,并为工作人员保存职业照射记录。

12.2 辐射安全管理规章制度

友谊医院已制定多项辐射安全管理制度,包括《辐射防护与安全管理小组及 其职责》、《辐射防护和安全保卫制度》、《操作规程》、《放射设备检修维护制度》、 《台账管理制度》、《放射工作人员管理制度》、《辐射工作场所监测制度》、《放射 性废物暂存、处置方案》、《辐射事故(件)应急预案》等。医院辐射安全管理严 格遵循国家的各项相关规定,针对血管造影诊疗项目,将修订血管造影机(DSA) 操作规程、辐射监测方案、辐射事故(件)应急预案等,确保全部辐射工作有章 可循,辐射工作安全受控,严格执行后能确保本项目的顺利实施。

12.3 辐射监测

12.3.1 个人剂量监测

医院已制订有关辐射工作人员个人剂量监测的管理要求,并将辐射工作人员个人剂量监测工作作为医院辐射监测计划体系的管理目标之一,要求医院辐射工作人员按要求接受个人剂量监测,并建立相应的个人剂量监测档案。医院每年对全院所有辐射工作场所至少监测一次,监测频度为每3个月检测一次。医院将严格要求辐射工作人员按照规范佩戴个人剂量计,规定在个人剂量计佩戴时间届满一个监测周期时,由专人负责收集剂量计送检更换,医院严格按照国家法规和相关标准进行个人剂量监测和相关的防护管理工作。

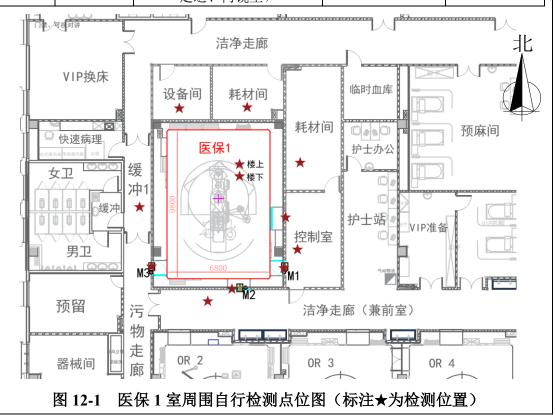
如发现监测数据异常,将立即暂停其辐射工作,查明原因并妥善解决后方可继续开展辐射工作。

12.3.2 工作场所和辐射环境监测

本项目拟利用现有的1台便携式辐射巡测仪,用于医保1室开展自行监测,可以满足医院辐射防护和环境保护的要求。

12.3.3 本项目工作场所自行监测方案

医院针对本项目,拟建立辐射环境自行监测方案,医保1室工作人员使用便 携式辐射巡测仪,对辐射工作场所进行监测,方案如下:


- (1) 监测项目: X 射线剂量率水平
- (2) 检测设备: 便携式辐射巡测仪

(3) 检测频次:剂量率水平每年不少于1次。

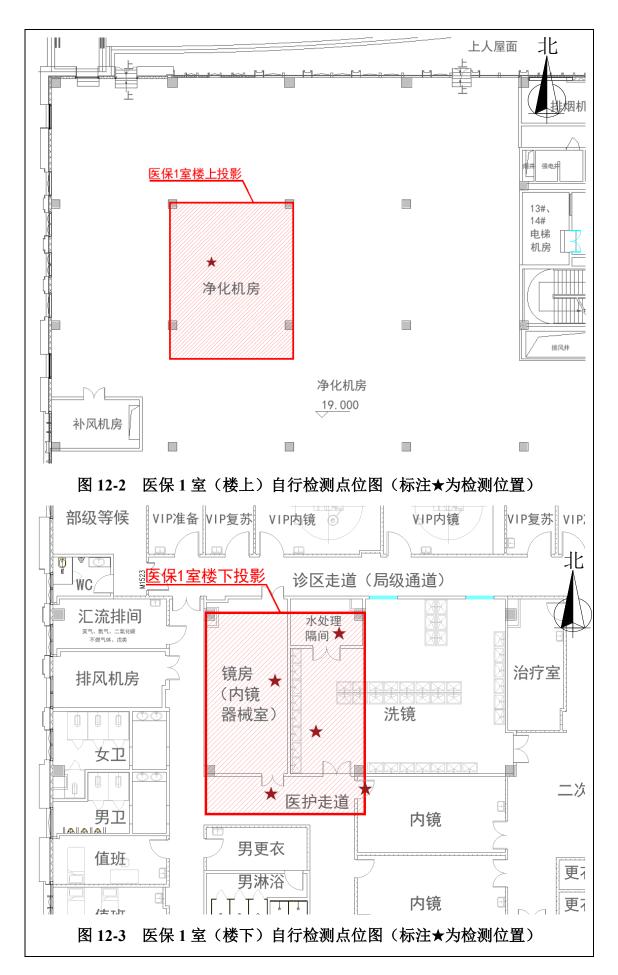

本项目涉及工作场所的监测布点:监测点位见图 12-1~12-3,主要是机房的周边、楼上、楼下、特别是控制室和防护门处。测量结果连同测量条件、测量方法和仪器室、测量时间等一同记录并妥善保存,并根据标准要求,每年进行一次设备状态检测。监测计划见表 12-1。

表 12-1	本项目辐射工作场所监测计划
1X 14-1	イトイ火 ロ 4日カニコム F-201771 mi.1火! VI X/I

场所	测点编号	测点位置	剂量率(μSv/h)	检测频次
	1	东侧控制室		1 次/年
	2	东侧耗材间		1 次/年
	3	南侧洁净走廊 (兼前室)		1 次/年
	4	西侧缓冲1		1 次/年
	5	北侧设备间		1 次/年
	6	北侧耗材间		1 次/年
医保1	7	观察窗		1 次/年
室	8	控制室门		1 次/年
	9	受检者门		1 次/年
	10	污物门		1 次/年
	11	楼上(设备层净化机房)		1 次/年
	12~16	楼下(镜房(内镜器械室)、 洗镜室、水处理隔间、医护 走道、内镜室)		1 次/年

50

12.4 辐射事故应急管理

医院依据《中华人民共和国放射性污染防治法》、《放射性同位素与射线装置 安全和防护条例》等法律法规的要求,将修订《辐射事故(件)应急预案》,包含对 DSA 项目的辐射事故应急管理相关内容,一旦发生辐射事故时,能迅速采取必要和有效的应急响应行动,妥善处理,保护工作人员和公众的健康与安全,同时在应急预案中进一步明确规定处理的组织机构及其职责分工、事故分级、应急措施、报告程序、联系方式等内容,能够满足医院实际辐射工作的需要。

发生辐射事故时,应当立即启动本单位的辐射事故应急方案,采取必要防范措施,并在 2 小时内填写《辐射事故初始报告表》,向当地生态环境部门报告。造成或可能造成人员超剂量照射的,还应同时向当地卫生健康部门报告。医院将每年至少组织一次应急演练。

12.5 项目环保验收内容建议

根据项目建设和运行情况,评价单位建议本项目竣工环境保护验收的内容见表12-2。

表12-2 项目竣工环保验收内容建议表

验收内容	验收要求
剂量限值	根据《电离辐射防护与辐射源安全基本标准》(GB18871-2002)和环评报告预测,公众、职业照射剂量约束值执行 0.1mSv/a 和 5mSv/a 要求。
剂量当量率	机房外 30cm 处周围剂量当量率应不大于 2.5μSv/h。
电离辐射标志和 中文警示	在辐射工作场所设有出束工作状态指示灯,防护门外贴有电离辐射警告标志。
布局和屏蔽设计	辐射工作场所建设和布局与环评报告表描述内容一致。辐射工作场所 墙和防护门的屏蔽能力满足辐射防护的要求。
辐射安全设施	机房设有工作状态指示灯、电离辐射警告标志以及铅衣等个人防护用品。
监测仪器	拟利用现有的 1 台便携式辐射巡测仪,辐射工作人员进行个人剂量监测,建立健康档案。
规章制度	拟修定各项安全管理制度、操作规程、工作人员考核计划等。落实辐射安全管理制度和操作规程。
人员培训	辐射工作人员通过辐射安全与防护考核。
应急预案	辐射事故应急预案符合工作实际,应急预案明确应急处理组织机构及职责、处理原则、信息传递、处理程序和处理技术方案等。配备必要的应急器材、设备。针对使用射线装置过程中可能存在的风险,建立应急预案,落实必要的应急装备。进行过辐射事故(件)应急演练。

表 13 结论与建议

13.1 结论

13.1.1 实践正当性分析

医院为了满足患者的及时介入诊断和治疗需要,医院拟新建1间医保1室并新增使用1台血管造影机(DSA)。血管造影机为很成熟的医用X射线设备,尽管X射线对人体有少许危害,但是借助DSA设备可以辅助医学诊断治疗,所获利益远大于其危害,符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中"实践正当性"的要求。

13.1.2 选址合理性分析

拟建的医保1室及相关场所位于医院新建的通州院区干保医技综合楼4层, 医保1室距周围环境敏感点较远,50m 范围内除了西侧23m 处为潞通新路之外, 其它方向50m 评价范围内均为医院内部,无学校、居民楼、养老院等敏感目标, 无商场等人员密集场所。选址充分考虑了患者诊疗的便利性以及周围场所的防护 与安全,对公众影响较小。因而从辐射环境保护方面论证,该项目选址是可行的。

13.1.3 辐射防护屏蔽能力分析

通过对医保 1 室的辐射屏蔽措施分析可知,机房外周围剂量当量率不超过 2.5µSv/h,并设置门-灯联锁、工作状态指示及电离辐射警示等措施,符合辐射安全防护的要求。

13.1.4 辐射环境评价

- (1)根据现场监测和估算结果可知,DSA设备运行后,预计工作人员和公众的年受照剂量均低于相应剂量约束限值(5mSv/a、0.1mSv/a),符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中关于"剂量限值"的要求。对于辐射工作人员年受照剂量异常情况,单位应该进行调查并报生态环境部门备案。
- (2)本项目 DSA 设备正常运行(使用)情况下,不产生放射性废气、放射性废水和放射性固废。
- (3)辐射安全防护管理: 医院设有辐射安全与环境保护管理机构,负责全院的辐射安全管理和监督工作。医院拟完善现有操作规程、岗位职责、辐射防护和安全保卫制度、人员培训考核计划、健康体检制度、辐射事故应急预案和设备

检修维护等制度。

(4)与《放射性同位素与射线装置安全许可管理办法》和《放射性同位素与射线装置安全和防护管理办法》的规定对照检查,满足要求。

13.1.5 结论

综上所述,首都医科大学附属北京友谊医院《通州院区新增1台DSA项目》相应的辐射安全和防护措施基本可行,在落实项目实施方案和本报告表提出的污染防治措施及建议前提下,其运行对周围环境产生的辐射影响,符合环境保护的要求。故从辐射环境保护角度论证,本项目的运行是可行的。

13.2 承诺

- (1)加强本单位的辐射安全管理,发现问题,及时整治,完善管理制度,落实管理责任。
 - (2) 严格按照工程设计施工,保证工程建设质量。
- (3)项目竣工许可后应按照环保相关法规要求及时自行办理竣工验收,并接受生态环境部门的监督检查。
- (4) 在辐射项目运行中决不容许违规操作和弄虚作假等现象发生,如若发现相关现象接受相关处理。对于辐射工作人员年受照剂量异常情况,单位进行调查并报生态环境部门备案。

表 14 审 批

下一级环保部门预审意见:			
	公章		
	A #		
经办人	年 月 日		
审批意见:			
	公章		
经办人	年 月 日		